📄 itklbfgsoptimizertest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkLBFGSOptimizerTest.cxx,v $
Language: C++
Date: $Date: 2005-02-08 03:18:41 $
Version: $Revision: 1.18 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <itkLBFGSOptimizer.h>
#include <vnl/vnl_math.h>
#include <iostream>
/**
* The objectif function is the quadratic form:
*
* 1/2 x^T A x - b^T x
*
* Where A is represented as an itkMatrix and
* b is represented as a itkVector
*
* The system in this example is:
*
* | 3 2 ||x| | 2| |0|
* | 2 6 ||y| + |-8| = |0|
*
*
* the solution is the vector | 2 -2 |
*
*/
class LBFCostFunction : public itk::SingleValuedCostFunction
{
public:
typedef LBFCostFunction Self;
typedef itk::SingleValuedCostFunction Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
itkNewMacro( Self );
itkTypeMacro( LBFCostFunction, SingleValuedCostFunction );
enum { SpaceDimension=2 };
typedef Superclass::ParametersType ParametersType;
typedef Superclass::DerivativeType DerivativeType;
typedef vnl_vector<double> VectorType;
typedef vnl_matrix<double> MatrixType;
typedef double MeasureType ;
LBFCostFunction()
{
}
double GetValue( const ParametersType & position ) const
{
double x = position[0];
double y = position[1];
std::cout << "GetValue ( " ;
std::cout << x << " , " << y;
std::cout << ") = ";
double val = 0.5*(3*x*x+4*x*y+6*y*y) - 2*x + 8*y;
std::cout << val << std::endl;
return val;
}
void GetDerivative( const ParametersType & position,
DerivativeType & derivative ) const
{
double x = position[0];
double y = position[1];
std::cout << "GetDerivative ( " ;
std::cout << x << " , " << y;
std::cout << ") = ";
derivative = DerivativeType(SpaceDimension);
derivative[0] = 3*x + 2*y -2;
derivative[1] = 2*x + 6*y +8;
std::cout << "(" ;
std::cout << derivative[0] <<" , ";
std::cout << derivative[1] << ")" << std::endl;
}
unsigned int GetNumberOfParameters(void) const
{
return SpaceDimension;
}
private:
};
int itkLBFGSOptimizerTest(int, char* [] )
{
std::cout << "LBFGS Optimizer Test \n \n";
typedef itk::LBFGSOptimizer OptimizerType;
typedef OptimizerType::InternalOptimizerType vnlOptimizerType;
// Declaration of a itkOptimizer
OptimizerType::Pointer itkOptimizer = OptimizerType::New();
// Declaration of the CostFunction adaptor
LBFCostFunction::Pointer costFunction = LBFCostFunction::New();
// Set some optimizer parameters
itkOptimizer->SetTrace( false );
itkOptimizer->SetMaximumNumberOfFunctionEvaluations( 1000 );
itkOptimizer->SetGradientConvergenceTolerance( 1e-3 );
itkOptimizer->SetLineSearchAccuracy( 0.1 );
itkOptimizer->SetDefaultStepLength( 5.0 );
itkOptimizer->SetCostFunction( costFunction.GetPointer() );
const double G_Tolerance = 1e-4; // Gradient magnitude tolerance
const int Max_Iterations = 100; // Maximum number of iterations
const bool Trace = false; // Tracing
const double LineSearch_Tol = 0.9; // Line search tolerance
const double Step_Length = 1.0; // Default step length
// const double F_Tolerance = 1e-3; // Function value tolerance: not used
// const double X_Tolerance = 1e-8; // Search space tolerance: not used
// const double Epsilon_Function = 1e-10; // Step : not used
vnlOptimizerType * vnlOptimizer = itkOptimizer->GetOptimizer();
vnlOptimizer->set_check_derivatives( 0 );
const unsigned int SpaceDimension = 2;
OptimizerType::ParametersType initialValue(SpaceDimension);
// We start not so far from | 2 -2 |
initialValue[0] = 100;
initialValue[1] = -100;
OptimizerType::ParametersType currentValue(2);
currentValue = initialValue;
itkOptimizer->SetInitialPosition( currentValue );
// Set some optimizer parameters
itkOptimizer->SetTrace( Trace );
itkOptimizer->SetMaximumNumberOfFunctionEvaluations( Max_Iterations );
itkOptimizer->SetGradientConvergenceTolerance( G_Tolerance );
itkOptimizer->SetLineSearchAccuracy( LineSearch_Tol );
itkOptimizer->SetDefaultStepLength( Step_Length );
itkOptimizer->Print( std::cout );
try
{
itkOptimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error ocurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
std::cout << "End condition = " << vnlOptimizer->get_failure_code() << std::endl;
std::cout << "Number of iters = " << vnlOptimizer->get_num_iterations() << std::endl;
std::cout << "Number of evals = " << vnlOptimizer->get_num_evaluations() << std::endl;
std::cout << std::endl;
OptimizerType::ParametersType finalPosition;
finalPosition = itkOptimizer->GetCurrentPosition();
std::cout << "Solution = (";
std::cout << finalPosition[0] << "," ;
std::cout << finalPosition[1] << ")" << std::endl;
//
// check results to see if it is within range
//
bool pass = true;
double trueParameters[2] = { 2, -2 };
for( unsigned int j = 0; j < 2; j++ )
{
if( vnl_math_abs( finalPosition[j] - trueParameters[j] ) > 0.01 )
pass = false;
}
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
// Get the final value of the optimizer
std::cout << "Testing GetValue() : ";
OptimizerType::MeasureType finalValue = itkOptimizer->GetValue();
if(fabs(finalValue+10.0)>0.01)
{
std::cout << "[FAILURE]" << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "[SUCCESS]" << std::endl;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -