📄 xortest1.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: XORTest1.cxx,v $
Language: C++
Date: $Date: 2007-08-17 13:10:57 $
Version: $Revision: 1.5 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkBatchSupervisedTrainingFunction.h"
#include "itkVector.h"
#include "itkListSample.h"
#include "itkArray.h"
#include <vector>
#include <fstream>
#define ROUND(x) (floor(x+0.5))
int
XORTest1(int argc, char* argv[])
{
if (argc < 1)
{
std::cout << "ERROR: data file name argument missing." << std::endl ;
return EXIT_FAILURE;
}
char* dataFileName = argv[1] ;
unsigned int num_input_nodes = 2;
unsigned int num_hidden_nodes = 5;
unsigned int num_output_nodes = 1;
typedef itk::Array<double> MeasurementVectorType;
typedef itk::Array<double> TargetVectorType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::BatchSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;
MeasurementVectorType mv;
mv.SetSize(num_input_nodes);
TargetVectorType tv;
tv.SetSize(num_output_nodes);
SampleType::Pointer sample = SampleType::New();
TargetType::Pointer targets = TargetType::New();
sample->SetMeasurementVectorSize( num_input_nodes);
targets->SetMeasurementVectorSize( num_output_nodes);
std::ifstream infile1;
infile1.open(dataFileName, std::ios::in);
infile1 >> mv[0] >> mv[1]>> tv[0];
while (!infile1.eof())
{
std::cout << "Input =" << mv << std::endl;
std::cout << "target =" << tv << std::endl;
sample->PushBack(mv);
targets->PushBack(tv);
infile1 >> mv[0] >> mv[1]>> tv[0];
}
infile1.close();
std::cout << sample->Size() << std::endl;
typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
OneHiddenLayerBackPropagationNeuralNetworkType::Pointer net1 = OneHiddenLayerBackPropagationNeuralNetworkType::New();
net1->SetNumOfInputNodes(num_input_nodes);
net1->SetNumOfFirstHiddenNodes(num_hidden_nodes);
net1->SetNumOfOutputNodes(num_output_nodes);
net1->SetFirstHiddenLayerBias(1.0);
net1->SetOutputLayerBias(1.0);
net1->Initialize();
net1->InitializeWeights();
net1->SetLearningRate(0.05);
TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
trainingfcn->SetIterations(200);
trainingfcn->SetThreshold(0.001);
trainingfcn->Train(net1, sample, targets);
//Network Simulation
std::cout << sample->Size() << std::endl;
std::cout << "Network Simulation" << std::endl;
TargetVectorType ov;
ov.SetSize(num_output_nodes);
SampleType::ConstIterator iter1 = sample->Begin();
TargetType::ConstIterator iter2 = targets->Begin();
unsigned int error1 = 0 ;
unsigned int error2 = 0 ;
int flag;
std::ofstream outfile;
outfile.open("out1.txt",std::ios::out);
while (iter1 != sample->End())
{
mv = iter1.GetMeasurementVector();
tv = iter2.GetMeasurementVector();
ov=net1->GenerateOutput(mv);
flag = 0;
if (fabs(tv[0]-ov[0])>0.3)
{
flag = 1;
}
if (flag == 1 && ROUND(tv[0]) == 1)
{
++error1;
}
else if (flag == 1 && ROUND(tv[0]) == -1)
{
++error2;
}
outfile << mv[0] << " " << mv[1] << " "
<< tv[0] << " " << ov[0] << std::endl;
std::cout << "Network Input = " << mv << std::endl;
std::cout << "Network Output = " << ov << std::endl;
std::cout << "Target = " << tv << std::endl;
++iter1;
++iter2;
}
std::cout << "Among 4 measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl ;
std::cout<<"Network Weights and Biases after Training= "<<std::endl;
std::cout << net1 << std::endl;
if ((error1 + error2) > 2)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -