📄 itkcumulativegaussianoptimizertest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkCumulativeGaussianOptimizerTest.cxx,v $
Language: C++
Date: $Date: 2008-05-26 00:51:22 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkCumulativeGaussianOptimizer.h"
#include "itkCumulativeGaussianCostFunction.h"
#include <iostream>
#include <cstdlib>
/**
* Generate test data with the Cumulative Gaussian Cost Function
* given parameter values for mean, standard deviation,
* lower and upper asymptotes of a Cumulative Gaussian.
* Estimate the parameters of the test data with the
* Cumulative Gaussian optimizer. The solution should
* be within differenceTolerance of the fitError.
*/
int itkCumulativeGaussianOptimizerTest(int, char* [] )
{
double mean = 3; // Mean of the Cumulative Gaussian.
// Ranges from 0 to N-1, where N is numberOfSamples.
double standardDeviation = 2; // Standard deviation of the Cumulative Gaussian.
double lowerAsymptote = -10; // Lower asymptotic value of the Cumulative Gaussian.
int numberOfSamples = 9; // Number of data samples.
double upperAsymptote = 10; // Upper asymptotic value of the Cumulative Gaussian.
double differenceTolerance = 1e-20; // Tolerance allowed for the difference between Gaussian iterations.
// Typedef and initialization for the Cumulative Gaussian Optimizer.
typedef itk::CumulativeGaussianOptimizer CumulativeGaussianOptimizerType;
CumulativeGaussianOptimizerType::Pointer optimizer = CumulativeGaussianOptimizerType::New();
// Typedef and initialization for the Cumulative Gaussian Cost Function.
typedef itk::CumulativeGaussianCostFunction CostFunctionType;
CostFunctionType::Pointer costFunction = CostFunctionType::New();
// Declare and initialize the data array.
//CostFunctionType::MeasureType * cumGaussianArray = new CostFunctionType::MeasureType();
//cumGaussianArray->SetSize(numberOfSamples);
// Set the parameters.
CostFunctionType::ParametersType parameters;
parameters.SetSize(4);
parameters[0] = mean;
parameters[1] = standardDeviation;
parameters[2] = lowerAsymptote;
parameters[3] = upperAsymptote;
// Set the range of data sampled from a Cumulative Gaussian.
costFunction->Initialize(numberOfSamples);
// Generate data given a set of parameters.
CostFunctionType::MeasureType * cumGaussianArray = costFunction->GetValue(parameters);
// Set the data array.
costFunction->SetOriginalDataArray(cumGaussianArray);
// Set the cost function.
optimizer->SetCostFunction(costFunction);
// Set the tolerance for the Gaussian iteration error.
optimizer->SetDifferenceTolerance(differenceTolerance);
// Print results after each iteration.
optimizer->SetVerbose(1);
// Set the data array.
optimizer->SetDataArray(cumGaussianArray);
// Start optimization;
optimizer->StartOptimization();
// The test passes if the difference between the given parameters and estimated parameters
// is less than or equal to 0.1.
if( fabs(optimizer->GetComputedMean() - mean) <= 0.1 &&
fabs(optimizer->GetComputedStandardDeviation() - standardDeviation) <= 0.1 &&
fabs(optimizer->GetUpperAsymptote() - upperAsymptote) <= 0.1 &&
fabs(optimizer->GetLowerAsymptote() - lowerAsymptote) <= 0.1)
{
std::cerr << std::endl
<< "Test Passed with a Fit Error of " << optimizer->GetFitError()
<< std::endl << std::endl;
// Print out the resulting paramters.
std::cerr << "Fitted mean = " << optimizer->GetComputedMean() << std::endl;
std::cerr << "Fitted standard deviation = " << optimizer->GetComputedStandardDeviation() << std::endl;
std::cerr << "Fitted upper intensity = " << optimizer->GetUpperAsymptote() << std::endl;
std::cerr << "Fitted lower intensity = " << optimizer->GetLowerAsymptote() << std::endl;
std::cout << "[TEST DONE]" << std::endl;
return EXIT_SUCCESS;
}
else
{
std::cerr << std::endl
<< "Test Failed with a Fit Error of " << optimizer->GetFitError()
<< std::endl << std::endl;
// Print out the resulting paramters.
std::cerr << "Fitted mean = " << optimizer->GetComputedMean() << std::endl;
std::cerr << "Fitted standard deviation = " << optimizer->GetComputedStandardDeviation() << std::endl;
std::cerr << "Fitted upper asymptote = " << optimizer->GetUpperAsymptote() << std::endl;
std::cerr << "Fitted lower asymptote = " << optimizer->GetLowerAsymptote() << std::endl;
return EXIT_FAILURE;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -