📄 itkstatisticsimagefiltertest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkStatisticsImageFilterTest.cxx,v $
Language: C++
Date: $Date: 2008-02-27 19:40:03 $
Version: $Revision: 1.11 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <iostream>
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkStatisticsImageFilter.h"
#include "itkRandomImageSource.h"
#include "itkFilterWatcher.h"
#include "vnl/vnl_math.h"
int itkStatisticsImageFilterTest(int, char* [] )
{
std::cout << "itkStatisticsImageFilterTest Start" << std::endl;
int status = 0;
typedef itk::Image<int,3> FloatImage;
FloatImage::Pointer image = FloatImage::New();
FloatImage::RegionType region;
FloatImage::SizeType size; size.Fill(64);
FloatImage::IndexType index; index.Fill(0);
region.SetIndex (index);
region.SetSize (size);
// first try a constant image
float fillValue = -100.0;
image->SetRegions( region );
image->Allocate();
image->FillBuffer( static_cast< FloatImage::PixelType >( fillValue ) );
float sum = fillValue * static_cast<float>( region.GetNumberOfPixels() );
typedef itk::StatisticsImageFilter<FloatImage> FilterType;
FilterType::Pointer filter = FilterType::New();
FilterWatcher filterWatch(filter);
filter->SetInput (image);
filter->UpdateLargestPossibleRegion();
if (filter->GetMinimum() != fillValue)
{
std::cerr << "GetMinimum failed! Got " << filter->GetMinimum() << " but expected " << fillValue << std::endl;
status++;
}
if (filter->GetMaximum() != fillValue)
{
std::cerr << "GetMaximum failed! Got " << filter->GetMaximum() << " but expected " << fillValue << std::endl;
status++;
}
if (filter->GetSum() != sum)
{
std::cerr << "GetSum failed! Got " << filter->GetSum() << " but expected " << sum << std::endl;
status++;
}
if (filter->GetMean() != fillValue)
{
std::cerr << "GetMean failed! Got " << filter->GetMean() << " but expected " << fillValue << std::endl;
status++;
}
if (filter->GetVariance() != 0.0)
{
std::cerr << "GetVariance failed! Got " << filter->GetVariance() << " but expected " << 0.0 << std::endl;
status++;
}
// Now generate a real image
typedef itk::RandomImageSource<FloatImage> SourceType;
SourceType::Pointer source = SourceType::New();
unsigned long randomSize[3] = {17, 8, 20};
source->SetSize(randomSize);
float minValue = -100.0;
float maxValue = 1000.0;
source->SetMin( static_cast< FloatImage::PixelType >( minValue ) );
source->SetMax( static_cast< FloatImage::PixelType >( maxValue ) );
filter->SetInput(source->GetOutput());
filter->UpdateLargestPossibleRegion();
double expectedSigma = sqrt((maxValue-minValue)*(maxValue-minValue)/12.0);
double epsilon = (maxValue - minValue) * .001;
if (vnl_math_abs(filter->GetSigma() - expectedSigma) > epsilon)
{
std::cerr << "GetSigma failed! Got " << filter->GetSigma() << " but expected " << expectedSigma << std::endl;
}
// Now generate an image with a known mean and variance
itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer rvgen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New();
double knownMean = 12.0;
double knownVariance = 10.0;
typedef itk::Image<double,3> DoubleImage;
DoubleImage::Pointer dImage = DoubleImage::New();
DoubleImage::SizeType dsize;
DoubleImage::IndexType dindex;
DoubleImage::RegionType dregion;
dsize.Fill(50);
dindex.Fill(0);
dregion.SetSize(dsize);
dregion.SetIndex(dindex);
dImage->SetRegions(dregion);
dImage->Allocate();
itk::ImageRegionIterator<DoubleImage> it(dImage, dregion);
while (!it.IsAtEnd())
{
it.Set(rvgen->GetNormalVariate(knownMean, knownVariance));
++it;
}
typedef itk::StatisticsImageFilter<DoubleImage> DFilterType;
DFilterType::Pointer dfilter = DFilterType::New();
dfilter->SetInput(dImage);
dfilter->UpdateLargestPossibleRegion();
double testMean = dfilter->GetMean();
double testVariance = dfilter->GetVariance();
double diff = vnl_math_abs(testMean - knownMean);
if ((diff != 0.0 && knownMean != 0.0) &&
diff / vnl_math_abs(knownMean) > .01)
{
std::cout << "Expected mean is " << knownMean << ", computed mean is " << testMean << std::endl;
return EXIT_FAILURE;
}
std::cout << "Expected mean is " << knownMean << ", computed mean is " << testMean << std::endl;
diff = vnl_math_abs(testVariance - knownVariance);
if ((diff != 0.0 && knownVariance != 0.0) &&
diff / vnl_math_abs(knownVariance) > .1)
{
std::cout << "Expected variance is " << knownVariance << ", computed variance is " << testVariance << std::endl;
return EXIT_FAILURE;
}
std::cout << "Expected variance is " << knownVariance << ", computed variance is " << testVariance << std::endl;
return status;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -