📄 itkbloxboundarypointimagetobloxboundaryprofileimagefiltertest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilterTest.cxx,v $
Language: C++
Date: $Date: 2003-09-10 14:30:05 $
Version: $Revision: 1.18 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
// Native ITK stuff
#include "itkSize.h"
#include "itkIndex.h"
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkPoint.h"
// Blox stuff
#include "itkBloxBoundaryProfileImage.h"
#include "itkBloxBoundaryPointPixel.h"
#include "itkBloxBoundaryPointImage.h"
#include "itkGradientImageToBloxBoundaryPointImageFilter.h"
#include "itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilter.h"
// Spatial function stuff
#include "itkSphereSpatialFunction.h"
#include "itkFloodFilledSpatialFunctionConditionalIterator.h"
// DOG gradient related stuff
#include "itkBinomialBlurImageFilter.h"
#include "itkDifferenceOfGaussiansGradientImageFilter.h"
#include "itkExceptionObject.h"
#include <time.h>
int itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilterTest(int, char*[])
{
const unsigned int dim = 3;
const unsigned int size = 20;
//-----------------Create a new input image--------------------
// Image size and spacing parameters
unsigned long sourceImageSize[] = { size,size,size };
double sourceImageSpacing[] = { 1.0,1.0,1.0 };
double sourceImageOrigin[] = { 0,0,0 };
// Image typedef
typedef itk::Image< unsigned char, dim > ImageType;
// Creates the sourceImage (but doesn't set the size or allocate memory)
ImageType::Pointer sourceImage = ImageType::New();
sourceImage->SetOrigin(sourceImageOrigin);
sourceImage->SetSpacing(sourceImageSpacing);
std::cout << "New sourceImage created" << std::endl;
// The following block allocates the sourceImage
// Create a size object native to the sourceImage type
ImageType::SizeType sourceImageSizeObject;
// Set the size object to the array defined earlier
sourceImageSizeObject.SetSize( sourceImageSize );
// Create a region object native to the sourceImage type
ImageType::RegionType largestPossibleRegion;
// Resize the region
largestPossibleRegion.SetSize( sourceImageSizeObject );
// Set the largest legal region size (i.e. the size of the whole sourceImage) to what we just defined
sourceImage->SetLargestPossibleRegion( largestPossibleRegion );
// Set the buffered region
sourceImage->SetBufferedRegion( largestPossibleRegion );
// Set the requested region
sourceImage->SetRequestedRegion( largestPossibleRegion );
// Now allocate memory for the sourceImage
sourceImage->Allocate();
std::cout << "New sourceImage allocated" << std::endl;
// Initialize the image to voxel values of 32
itk::ImageRegionIterator<ImageType> it =
itk::ImageRegionIterator<ImageType>(sourceImage, largestPossibleRegion);
for(it.GoToBegin(); !it.IsAtEnd(); ++it)
{
it.Set(32);
}
//---------Put a sphere in the input image-----------
typedef itk::SphereSpatialFunction<dim> FunctionType;
typedef FunctionType::InputType FunctionPositionType;
// Create and initialize a new sphere function
FunctionType::Pointer spatialFunc = FunctionType::New();
unsigned int sphereRadius = 7;
spatialFunc->SetRadius( sphereRadius );
// Set center of spatial function to (10,10,10)
FunctionPositionType center;
center[0]=10;
center[1]=10;
center[2]=10;
spatialFunc->SetCenter(center);
std::cout << "Sphere spatial function created" << std::endl;
// Create and initialize a spatial function iterator
ImageType::IndexType seedPos;
const ImageType::IndexValueType pos[] = {10,10,10};
seedPos.SetIndex(pos);
typedef itk::FloodFilledSpatialFunctionConditionalIterator
<ImageType, FunctionType> ItType;
ItType sfi = ItType(sourceImage, spatialFunc, seedPos);
// Iterate through the entire image and set interior pixels to 255
for( ; !( sfi.IsAtEnd() ); ++sfi)
{
sfi.Set(255);
}
std::cout << "Spatial function iterator created, sphere drawn" << std::endl;
//--------------------Do blurring and edge detection----------------
typedef ImageType OutputType;
// Create a binomial blur filter
itk::BinomialBlurImageFilter<ImageType, OutputType>::Pointer binfilter;
binfilter = itk::BinomialBlurImageFilter<ImageType, OutputType>::New();
sourceImage->SetRequestedRegion(sourceImage->GetLargestPossibleRegion() );
// Set filter parameters
binfilter->SetInput(sourceImage);
binfilter->SetRepetitions(1);
// Set up the output of the filter
ImageType::Pointer blurredImage = binfilter->GetOutput();
// Execute the filter
binfilter->Update();
std::cout << "Binomial blur filter updated\n";
// Create a differennce of gaussians gradient filter
typedef itk::DifferenceOfGaussiansGradientImageFilter<OutputType,
double> DOGFilterType;
DOGFilterType::Pointer DOGFilter = DOGFilterType::New();
// We're filtering the output of the binomial filter
DOGFilter->SetInput(blurredImage);
// Get the output of the gradient filter
DOGFilterType::TOutputImage::Pointer gradientImage = DOGFilter->GetOutput();
// Go!
DOGFilter->Update();
//------------------------Blox Boundary Point Analysis-------------------------
// Typedefs for finding boundary points with GradientImageToBloxBoundaryPointImageFilter
typedef itk::GradientImageToBloxBoundaryPointImageFilter<DOGFilterType::TOutputImage> TBPFilter;
typedef TBPFilter::TOutputImage BloxBPImageType;
// Find boundary points using results of DOG blurring
TBPFilter::Pointer bpFilter= TBPFilter::New();
bpFilter->SetInput( DOGFilter->GetOutput() );
// Get the output of the boundary point filter
BloxBPImageType::Pointer bloxBoundaryPointImage = bpFilter->GetOutput();
// Update
bpFilter->Update();
//------------------------Blox Profile Analysis---------------------------------
// For calculating total execution time
int startTime;
int endTime;
// Time the execution of profiles
startTime = clock();
// Typedefs for bloxboundaryprofile filter and image
typedef itk::BloxBoundaryPointImageToBloxBoundaryProfileImageFilter< ImageType > TProfileFilter;
typedef itk::BloxBoundaryProfileImage< dim > BloxProfileImageType;
TProfileFilter::Pointer profileFilter = TProfileFilter::New();
std::cout << "Profile filter created" << std::endl;
// Set the inputs need to find profiles
profileFilter->SetInput1( blurredImage );
profileFilter->SetInput2( bloxBoundaryPointImage );
std::cout << "Input images set" << std::endl;
// Initialize and set required parameters
double setUniqueAxis = 10; // major axis of sampling region (ellipsoid)
double setSymmetricAxes = 5; // minor axes of sampling region (ellipsoid)
unsigned int numberOfBins = static_cast<unsigned int>(setUniqueAxis); // lets make each bin 1 voxel wide
unsigned int splatMethod = 0; // method to weight voxel intensities
// 0 - Gaussian, 1 - Triangular
unsigned int spaceDimension = 4; // number of cost function parameters
profileFilter->Initialize(setUniqueAxis, setSymmetricAxes, numberOfBins,
splatMethod, spaceDimension);
std::cout << "Profile filter initialized" << std::endl;
// Get the output of the profile filter
BloxProfileImageType::Pointer bloxBoundaryProfileImage = profileFilter->GetOutput();
// Try and update profile filter if there are no exceptions
try{profileFilter->Update();}
catch( itk::ExceptionObject & myException )
{
std::cerr << "Exception caught in Update() method" << std::endl;
std::cerr << myException << std::endl;
return EXIT_FAILURE;
}
//-------------------Pull boundary profiles out of the image----------------------
// The test for BloxBoundaryPointImageToBloxBoundaryProfileImageFilter
// requires that the mean of estimated boundary locations is within
// 0.1 voxels of the sphere's boundary.
// Create an iterator that will walk the blox image
typedef itk::ImageRegionIterator<BloxProfileImageType> BloxIterator;
//profile iterator
BloxIterator bloxIt = BloxIterator(bloxBoundaryProfileImage,
bloxBoundaryProfileImage->GetRequestedRegion() );
// Used for obtaining the index of a pixel
BloxProfileImageType::IndexType bloxindex;
// Position are we at in the list
double averageRadius = 0;
unsigned int profileCount = 1;
for (bloxIt.GoToBegin(); !bloxIt.IsAtEnd(); ++bloxIt)
{
// What position are we at in the list?
// Get the index of the pixel
bloxindex = bloxIt.GetIndex();
std::cout << "bloxindex: " << bloxindex << std::endl;
// The iterator for accessing linked list info from profile pixel
// Walk through all of the elements at the pixel
for(itk::BloxBoundaryProfilePixel<3>::const_iterator bpiterator = bloxIt.Value().begin(); bpiterator != bloxIt.Value().end(); ++bpiterator)
{
// Used for obtaining position data from a BloxPoint
const itk::Point<double, 3> position = (*bpiterator)->GetOptimalBoundaryLocation();
// Find location of boundary profile on sphere
const double halfsize=static_cast<double>(size)/2.0;
const double radius = sqrt( pow((position[0] - halfsize), 2.0) + pow((position[1] - halfsize), 2.0) + pow((position[2] - halfsize), 2.0) );
// Keep running sum of estimated radius to compute average radius
averageRadius += radius;
profileCount++;
if(profileCount == 2)
{
// Lets print some parameters of the blox boundary profile item for increased coverage
// only do it once to keep the test fast.
std::cerr << "Lower Intensity: " << (*bpiterator)->GetLowerIntensity() << std::endl
<< "Upper Intensity: " << (*bpiterator)->GetUpperIntensity() << std::endl
<< "Mean: " << (*bpiterator)->GetMean() << std::endl
<< "Profile Length: " << (*bpiterator)->GetProfileLength() << std::endl
<< "Normalized Mean: " << (*bpiterator)->GetMeanNormalized() << std::endl
<< "Standard Deviation: " << (*bpiterator)->GetStandardDeviation() << std::endl
<< "Normalized SD: " << (*bpiterator)->GetStandardDeviationNormalized() << std::endl;
}
} // end iterate
}
// Compute average radius estimated by boundary profiles
averageRadius = averageRadius/profileCount;
std::cout << "Sphere Radius = " << sphereRadius << " Average Radius = " << averageRadius << std::endl;
// Report time to execute itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilter
endTime = clock();
std::cout << "Profile calculation time: " << (endTime - startTime)/CLOCKS_PER_SEC
<< " seconds" << std::endl;
// Test passes if estimated radius is within .1 voxel of sphere radius
const double RadiusDifference = fabs(averageRadius - sphereRadius);
const double tolerance = 1;
if(RadiusDifference <= tolerance)
{
std::cout << "itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilterTest Passed!!!" << std::endl;
return EXIT_SUCCESS;
}
else
{
std::cerr << "itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilterTest Failed! (TEST: ("
<< RadiusDifference
<< " <= "
<< tolerance
<< ") Failed!"
<< std::endl;
return EXIT_FAILURE;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -