⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itkrecursivegaussianimagefiltersontensorstest.cxx

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 CXX
字号:
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkRecursiveGaussianImageFiltersOnTensorsTest.cxx,v $
  Language:  C++
  Date:      $Date: 2006-03-09 03:37:16 $
  Version:   $Revision: 1.2 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageLinearConstIteratorWithIndex.h"
#include "itkImageLinearIteratorWithIndex.h"
#include "itkRecursiveGaussianImageFilter.h"
#include "itkSymmetricSecondRankTensor.h"
#include "vnl/vnl_math.h"

int itkRecursiveGaussianImageFiltersOnTensorsTest(int, char* [] ) 
{
  // In this test, we will create a 9x9 image of tensors with pixels (4,4) 
  // and (1,6) set to 'tensor1'. We will filter it using 
  // RecursiveGaussianImageFilter and compare a few filtered pixels.
  // 
  const unsigned int Dimension = 2;
  const double       sigma     = 1;
  const double       tolerance = 0.001; 
  
  //Create ON and OFF tensors.
  typedef itk::SymmetricSecondRankTensor<double,3> Double3DTensorType;
  Double3DTensorType tensor0(0.0);
  Double3DTensorType tensor1;
  tensor1(0,0) = 1.0; 
  tensor1(0,1) =  0.0; 
  tensor1(0,2) =  0.0; 
  tensor1(1,0) =  0.0; // overrides (0,1)
  tensor1(1,1) = 3.0; 
  tensor1(1,2) =  0.0; 
  tensor1(2,0) =  0.0; // overrides (0,2)
  tensor1(2,1) =  0.0; // overrides (1,2)
  tensor1(2,2) = 1.0; 
   
  typedef Double3DTensorType PixelType;
  typedef itk::Image< PixelType, Dimension >  ImageType;
  typedef itk::ImageLinearIteratorWithIndex< ImageType >      IteratorType;
  typedef itk::ImageLinearConstIteratorWithIndex< ImageType > ConstIteratorType;
  
  //Create the 9x9 input image
  ImageType::SizeType size;
  size.Fill( 9 );
  ImageType::IndexType index;
  index.Fill( 0 );
  ImageType::RegionType region;
  region.SetSize( size );
  region.SetIndex( index );
  ImageType::Pointer inputImage = ImageType::New();
  inputImage->SetLargestPossibleRegion( region );
  inputImage->SetBufferedRegion( region );
  inputImage->SetRequestedRegion( region );
  inputImage->Allocate();
  inputImage->FillBuffer( tensor0);
  
  std::cout 
    << "Apply RecursiveGaussianImageFilter with a 9x9 image, pixels (4,4) "
    << "and (1,6) set to ON." 
    << std::endl;
  
  /* Set pixel (4,4) with the value 1 
   * and pixel (1,6) with the value 2 
   */
  index[0] = 4;
  index[1] = 4;
  inputImage->SetPixel( index, tensor1);
  index[0] = 1;
  index[1] = 6;
  inputImage->SetPixel( index, tensor1);
 
  //Gaussian filter this image now. Each component of the tensor
  // is filtered independently.
  //
  typedef itk::RecursiveGaussianImageFilter< 
          ImageType, ImageType >  FilterType;
  FilterType::Pointer filterX = FilterType::New();
  FilterType::Pointer filterY = FilterType::New();
  filterX->SetDirection( 0 );   // 0 --> X direction
  filterY->SetDirection( 1 );   // 1 --> Y direction
  filterX->SetOrder( FilterType::ZeroOrder );
  filterY->SetOrder( FilterType::ZeroOrder );
  filterX->SetNormalizeAcrossScale( false );
  filterY->SetNormalizeAcrossScale( false );
  filterX->SetInput( inputImage );
  filterY->SetInput( filterX->GetOutput() );
  filterX->SetSigma( sigma );
  filterY->SetSigma( sigma );
  try
    {
    filterY->Update();
    }
  catch ( itk::ExceptionObject &err)
    {
    std::cout << "ExceptionObject caught a !" << std::endl; 
    std::cout << err << std::endl; 
    return -1;
    }

  //Test a few pixels of the  fitlered image
  //
  ImageType::Pointer filteredImage = filterY->GetOutput();
  ConstIteratorType cit( filteredImage, filteredImage->GetRequestedRegion() );
  cit.SetDirection(0);

  /* Print out all Tensor values.
  for ( cit.GoToBegin(); ! cit.IsAtEnd(); cit.NextLine())
    {
    cit.GoToBeginOfLine();
    while ( ! cit.IsAtEndOfLine() )
      {
      std::cout << "Tensor at index: " << cit.GetIndex() << " is " <<
        cit.Get() << std::endl;
      ++cit;
      }
    }
  */
  
  index[0] = 4;
  index[1] = 4;
  cit.SetIndex(index);
  if( vnl_math_abs(cit.Get()(0,0) - 0.160313) > tolerance )
    {
    std::cout << "[FAILED] Tensor(0,0) at index (4,4) must be 0.1603 but is " 
      << cit.Get()(0,0) << std::endl;
    return EXIT_FAILURE;
    }

  index[0]=6;
  index[1]=6;
  cit.SetIndex(index);
  if( vnl_math_abs(cit.Get()(3,3) -0.0026944) > tolerance )
    {
    std::cout << "[FAILED] Tensor(3,3) at index (6,6) must be 0.0026944 but is " 
      << cit.Get()(3,3) << std::endl;
    return EXIT_FAILURE;
    }
  
  std::cout << "[PASSED]" << std::endl;
  return EXIT_SUCCESS;
}

  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -