📄 itkquaternionrigidtransformtest.cxx
字号:
parameters[2] = -4.0 * sin( 0.5 * angle );
parameters[3] = cos( 0.5 * angle );
parameters[4] = 6.0;
parameters[5] = 8.0;
parameters[6] = 10.0;
quaternionRigid->SetParameters( parameters );
TransformType::InputPointType pInit;
pInit[0] = 1.0;
pInit[1] = 1.5;
pInit[2] = 2.6;
TransformType::JacobianType jacobian;
jacobian = quaternionRigid->GetJacobian( pInit );
std::cout << jacobian << std::endl;
TransformType::JacobianType approxJacobian = jacobian;
for( unsigned int k = 0; k < quaternionRigid->GetNumberOfParameters(); k++ )
{
const double delta = 0.001;
TransformType::ParametersType plusParameters;
TransformType::ParametersType minusParameters;
plusParameters = parameters;
minusParameters = parameters;
plusParameters[k] += delta;
minusParameters[k] -= delta;
TransformType::OutputPointType plusPoint;
TransformType::OutputPointType minusPoint;
quaternionRigid->SetParameters( plusParameters );
plusPoint = quaternionRigid->TransformPoint( pInit );
quaternionRigid->SetParameters( minusParameters );
minusPoint = quaternionRigid->TransformPoint( pInit );
for( unsigned int j = 0; j < 3; j++ )
{
double approxDerivative = ( plusPoint[j] - minusPoint[j] ) / ( 2.0 * delta );
double computedDerivative = jacobian[j][k];
approxJacobian[j][k] = approxDerivative;
if ( vnl_math_abs( approxDerivative - computedDerivative ) > 1e-5 )
{
std::cerr << "Error computing Jacobian [" << j << "][" << k << "]" << std::endl;
std::cerr << "Result should be: " << approxDerivative << std::endl;
std::cerr << "Reported result is: " << computedDerivative << std::endl;
std::cerr << " [ FAILED ] " << std::endl;
return EXIT_FAILURE;
} // if
} // for j
} // for k
std::cout << approxJacobian << std::endl;
std::cout << " [ PASSED ] " << std::endl;
// Testing inverse transform
std::cout << "Testing BackTransform()" << std::endl;
TransformType::OutputPointType pOut;
quaternionRigid->SetParameters( parameters );
pOut = quaternionRigid->BackTransform( quaternionRigid->TransformPoint( pInit ) );
// pOut should equate pInit
for( unsigned int j = 0; j < 3; j++ )
{
if ( vnl_math_abs( pOut[j] - pInit[j] ) > 1e-5 )
{
std::cerr << "Error computing back transform" << std::endl;
std::cerr << "Result should be: " << pInit << std::endl;
std::cerr << "Reported result is: " << pOut << std::endl;
std::cerr << " [ FAILED ] " << std::endl;
return EXIT_FAILURE;
}
}
std::cout << " [ PASSED ] " << std::endl;
}
/* Create a Rigid 3D transform with a defined center and a rotation given by a Matrix */
{
TransformType::Pointer rotation = TransformType::New();
TransformType::VnlQuaternionType qrotation;
// 15 degrees in radians
const double angle = 15.0 * atan( 1.0f ) / 45.0;
const double sinth2 = sin( angle / 2.0 );
const double costh2 = cos( angle / 2.0 );
const double sinth = sin( angle );
const double costh = cos( angle );
// around the positive Z axis
qrotation[0] = 0.0;
qrotation[1] = 0.0;
qrotation[2] = sinth2;
qrotation[3] = costh2;
rotation->SetIdentity();
rotation->SetRotation( qrotation );
TransformType::InputPointType center;
center[0] = 17;
center[1] = 19;
center[2] = 23;
TransformType::OutputVectorType itranslation;
itranslation[0] = 13;
itranslation[1] = 17;
itranslation[2] = 19;
rotation->SetTranslation( itranslation );
rotation->SetCenter( center );
//rotation->ComputeOffset();
std::cout << "rotation: " << rotation;
// Verify the Offset content
TransformType::OffsetType offset = rotation->GetOffset();
std::cout << "pure Rotation test: " << std::endl;
std::cout << "Offset = " << offset << std::endl;
TransformType::OffsetType ioffset;
ioffset[0] = center[0] + itranslation[0];
ioffset[1] = center[1] + itranslation[1];
ioffset[2] = center[2] + itranslation[2];
ioffset[0] -= costh * center[0] - sinth * center[1];
ioffset[1] -= sinth * center[0] + costh * center[1];
ioffset[2] -= center[2];
std::cout << "iOffset = " << ioffset << std::endl;
for(unsigned int i=0; i<N; i++)
{
if( fabs( offset[i]- ioffset[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Get Offset differs from SetOffset value " << std::endl;
return EXIT_FAILURE;
}
// VNL uses transposed matrices.
vnl_matrix_fixed<double,3,3> mrotation = qrotation.rotation_matrix_transpose();
// Verify the Matrix content
TransformType::MatrixType matrix = rotation->GetRotationMatrix();
std::cout << "Rotation matrix: " << std::endl;
std::cout << matrix << std::endl;
for(unsigned int i=0; i<N; i++)
{
for(unsigned int j=0; j<N; j++)
{
if( fabs( matrix[i][j]- mrotation[j][i] ) > epsilon )
{
Ok = false;
break;
}
}
}
if( !Ok )
{
std::cerr << "Get Rotation Matrix differs " << std::endl;
std::cerr << "from SetRotationMatrix value " << std::endl;
return EXIT_FAILURE;
}
{
// Rotate an itk::Point
TransformType::InputPointType::ValueType pInit[3] = {10,10,10};
TransformType::InputPointType p = pInit;
TransformType::InputPointType q;
const CoordinateType x = p[0] - center[0];
const CoordinateType y = p[1] - center[1];
const CoordinateType z = p[2] - center[2];
q[0] = x * costh - y * sinth + center[0] + itranslation[0];
q[1] = x * sinth + y * costh + center[1] + itranslation[1];
q[2] = z + center[2] + itranslation[2];
TransformType::OutputPointType r;
r = rotation->TransformPoint( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i]- r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error rotating point : " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an itk::Point " << std::endl;
}
}
{
// Rotate an itk::Vector
TransformType::InputVectorType::ValueType pInit[3] = {10,10,10};
TransformType::InputVectorType p = pInit;
TransformType::OutputVectorType q;
q[0] = p[0] * costh - p[1] * sinth;
q[1] = p[0] * sinth + p[1] * costh;
q[2] = p[2];
TransformType::OutputVectorType r;
r = rotation->TransformVector( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i] - r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error rotating vector : " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok rotating an itk::Vector " << std::endl;
}
}
{
// Rotate an itk::CovariantVector
TransformType::InputCovariantVectorType::ValueType pInit[3] = {10,10,10};
TransformType::InputCovariantVectorType p = pInit;
TransformType::OutputCovariantVectorType q;
q[0] = p[0] * costh - p[1] * sinth;
q[1] = p[0] * sinth + p[1] * costh;
q[2] = p[2];
TransformType::OutputCovariantVectorType r;
r = rotation->TransformCovariantVector( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i] - r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error Rotating covariant vector: " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an itk::CovariantVector " << std::endl;
}
}
{
// Rotate a vnl_vector
TransformType::InputVnlVectorType p;
p[0] = 11;
p[1] = 7;
p[2] = 15;
TransformType::OutputVnlVectorType q;
q[0] = p[0] * costh - p[1] * sinth;
q[1] = p[0] * sinth + p[1] * costh;
q[2] = p[2];
TransformType::OutputVnlVectorType r;
r = rotation->TransformVector( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i] - r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error translating vnl_vector : " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an vnl_Vector " << std::endl;
}
}
}
std::cout << std::endl;
std::cout << "Test PASSED !" << std::endl;
std::cout << std::endl;
{
// Testing SetMatrix()
std::cout << "Testing SetMatrix() ... ";
unsigned int par;
typedef TransformType::MatrixType MatrixType;
MatrixType matrix;
TransformType::Pointer t = TransformType::New();
// attempt to set an non-orthogonal matrix
par = 0;
for( unsigned int row = 0; row < 3; row++ )
{
for( unsigned int col = 0; col < 3; col++ )
{
matrix[row][col] = static_cast<double>( par + 1 );
++par;
}
}
Ok = false;
try
{
t->SetMatrix( matrix );
}
catch ( itk::ExceptionObject & itkNotUsed(err) )
{
Ok = true;
}
catch( ... )
{
std::cout << "Caught unknown exception" << std::endl;
}
if( !Ok )
{
std::cerr << "Error: expected to catch an exception when attempting";
std::cerr << " to set an non-orthogonal matrix." << std::endl;
return EXIT_FAILURE;
}
t = TransformType::New();
// attempt to set an orthogonal matrix
matrix.GetVnlMatrix().set_identity();
double a = 1.0 / 180.0 * vnl_math::pi;
matrix[0][0] = cos( a );
matrix[0][1] = -1.0 * sin( a );
matrix[1][0] = sin( a );
matrix[1][1] = cos( a );
Ok = true;
try
{
t->SetMatrix( matrix );
}
catch ( itk::ExceptionObject & err )
{
std::cout << err << std::endl;
Ok = false;
}
catch( ... )
{
std::cout << "Caught unknown exception" << std::endl;
Ok = false;
}
if( !Ok )
{
std::cerr << "Error: caught unexpected exception" << std::endl;
return EXIT_FAILURE;
}
// Check the computed parameters
typedef TransformType::ParametersType ParametersType;
ParametersType e( t->GetNumberOfParameters() );
e.Fill( 0.0 );
e[2] = sin(0.5 * a);
e[3] = cos(0.5 * a );
t = TransformType::New();
t->SetParameters( e );
TransformType::Pointer t2 = TransformType::New();
t2->SetMatrix( t->GetMatrix() );
ParametersType p = t2->GetParameters();
for( unsigned int k = 0; k < e.GetSize(); k++ )
{
if( fabs( e[k] - p[k] ) > epsilon )
{
std::cout << " [ FAILED ] " << std::endl;
std::cout << "Expected parameters: " << e << std::endl;
std::cout << "but got: " << p << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "[ PASSED ]" << std::endl;
}
return EXIT_SUCCESS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -