📄 itkdiffusiontensor3dtest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkDiffusionTensor3DTest.cxx,v $
Language: C++
Date: $Date: 2008-01-18 18:24:13 $
Version: $Revision: 1.7 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <iostream>
#include "itkDiffusionTensor3D.h"
#include "itkImage.h"
#include "itkImageRegionIterator.h"
int itkDiffusionTensor3DTest(int, char* [] )
{
// Test it all
float val[6] = {1.8, 0.2, 0.5, 3.4, 2.0, 1.2};
typedef itk::DiffusionTensor3D<float> Float3DTensorType;
typedef itk::DiffusionTensor3D<unsigned char> Uchar3DTensorType;
Float3DTensorType pixel(val);
unsigned char pixelInit0[6] = {255, 255, 255,128,34,17};
unsigned char pixelInit1[6] = {255, 255, 244,19,23,29};
Uchar3DTensorType pixelArray[2];
pixelArray[0] = pixelInit0;
pixelArray[1] = pixelInit1;
std::cout << "sizeof(pixel) = " << sizeof (pixel) << std::endl;
if (sizeof(pixel) != 6 * sizeof(Float3DTensorType::ComponentType))
{
std::cerr << "ERROR: sizeof(pixel) == " << sizeof(pixel) << " but is should be " << 6 * sizeof(Float3DTensorType::ComponentType) << std::endl;
return EXIT_FAILURE;
}
std::cout << "pixel.GetNumberOfComponents = " << pixel.GetNumberOfComponents() << std::endl;
std::cout << "pixel.GetNthComponent()" << std::endl;
for (unsigned int i = 0; i < pixel.GetNumberOfComponents(); i++)
{
std::cout << "\tpixel[" << i << "] = " << pixel.GetNthComponent(i) << std::endl;
}
pixel(0,0) = 11.0;
pixel(0,1) = 21.0;
pixel(0,2) = 15.0;
pixel(1,0) = 11.0;
pixel(1,1) = 31.0;
pixel(1,2) = 10.0;
pixel(2,0) = 11.0; // these three last element will overwrite its symmetric counterparts
pixel(2,1) = 41.0;
pixel(2,2) = 14.0;
std::cout << "testing the pixel(i,j) API" << std::endl;
for (unsigned int i = 0; i < pixel.GetNumberOfComponents(); i++)
{
std::cout << "\tpixel[" << i << "] = " << pixel.GetNthComponent(i) << std::endl;
}
std::cout << "pixel[0] = 111; pixel[1] = 222; pixel[2] = 333;" << std::endl;
std::cout << "pixel[3] = 444; pixel[4] = 555; pixel[5] = 666;" << std::endl;
pixel[0] = 111; pixel[1] = 222; pixel[2] = 333;
pixel[3] = 444; pixel[4] = 555; pixel[5] = 666;
for (unsigned int i = 0; i < pixel.GetNumberOfComponents(); i++)
{
std::cout << "\tpixel[" << i << "] = " << pixel.GetNthComponent(i) << std::endl;
}
std::cout << "std::cout << pixel << std::endl;" << std::endl;
std::cout << "\t" << pixel << std::endl;
for (unsigned int j = 0; j < 2; j++)
{
std::cout << "pixelArray["<< j << "].GetNumberOfComponents = " << pixelArray[j].GetNumberOfComponents() << std::endl;
std::cout << "pixelArray[" << j << "].GetNthComponent()" << std::endl;
for (unsigned int i = 0; i < pixelArray[j].GetNumberOfComponents(); i++)
{
std::cout << "\tpixelArray[" << j << "].GetNthComponent(" << i << ") = " << static_cast<int>(pixelArray[j].GetNthComponent(i)) << std::endl;
}
}
std::cout << "Testing arithmetic methods" << std::endl;
Float3DTensorType pa;
Float3DTensorType pb;
pa[0] = 1.25;
pa[1] = 3.25;
pa[2] = 5.25;
pa[3] = 1.25;
pa[4] = 3.25;
pa[5] = 5.25;
pb[0] = 1.55;
pb[1] = 3.55;
pb[2] = 5.55;
pb[3] = 1.55;
pb[4] = 3.55;
pb[5] = 5.55;
Float3DTensorType pc;
pc = pa + pb;
std::cout << "addition = " << pc << std::endl;
pc = pa - pb;
std::cout << "subtraction = " << pc << std::endl;
pc += pb;
std::cout << "in-place addition = " << pc << std::endl;
pc -= pb;
std::cout << "in-place subtraction = " << pc << std::endl;
pc = pa * 3.2;
std::cout << "product by scalar = " << pc << std::endl;
/** Create an Image of tensors */
typedef Float3DTensorType PixelType;
typedef itk::Image< PixelType, 3 > ImageType;
ImageType::Pointer dti = ImageType::New();
ImageType::SizeType size;
ImageType::IndexType start;
ImageType::RegionType region;
size[0] = 128;
size[1] = 128;
size[2] = 128;
start[0] = 0;
start[1] = 0;
start[2] = 0;
region.SetIndex( start );
region.SetSize( size );
dti->SetRegions( region );
dti->Allocate();
ImageType::SpacingType spacing;
spacing[0] = 0.5;
spacing[1] = 0.5;
spacing[2] = 1.5;
ImageType::PointType origin;
origin[0] = 25.5;
origin[1] = 25.5;
origin[2] = 27.5;
dti->SetOrigin( origin );
dti->SetSpacing( spacing );
PixelType tensor;
tensor[0] = 1.2;
tensor[1] = 2.2;
tensor[2] = 3.2;
tensor[3] = 4.2;
tensor[4] = 5.2;
tensor[5] = 6.2;
dti->FillBuffer( tensor );
typedef itk::ImageRegionIterator< ImageType > IteratorType;
IteratorType it( dti, region );
it.GoToBegin();
while( !it.IsAtEnd() )
{
it.Set( tensor );
++it;
}
// Test Eigen values computation
{
typedef itk::DiffusionTensor3D<double> Double3DTensorType;
Double3DTensorType tensor2;
double v[3];
v[0] = 19.0;
v[1] = 23.0;
v[2] = 29.0;
tensor2(0,0) = v[0];
tensor2(0,1) = 0.0;
tensor2(0,2) = 0.0;
tensor2(1,0) = 0.0; // overrides (0,1)
tensor2(1,1) = v[1];
tensor2(1,2) = 0.0;
tensor2(2,0) = 0.0; // overrides (0,2)
tensor2(2,1) = 0.0; // overrides (1,2)
tensor2(2,2) = v[2];
std::cout << "DiffusionTensor3D = " << std::endl;
std::cout << tensor2 << std::endl;
Double3DTensorType::EigenValuesArrayType eigenValues;
Double3DTensorType::EigenVectorsMatrixType eigenVectors;
tensor2.ComputeEigenAnalysis( eigenValues, eigenVectors );
std::cout << "EigenValues = " << std::endl;
std::cout << eigenValues << std::endl;
std::cout << "EigenVectors = " << std::endl;
std::cout << eigenVectors << std::endl;
const double tolerance = 1e-4;
{
Double3DTensorType::EigenValuesArrayType expectedValues;
expectedValues[0] = v[0];
expectedValues[1] = v[1];
expectedValues[2] = v[2];
for(unsigned int i=0; i<3; i++)
{
if( fabs( expectedValues[i] - eigenValues[i] ) > tolerance )
{
std::cerr << "Eigenvalue computation failed" << std::endl;
std::cerr << "expectedValues = " << expectedValues << std::endl;
std::cerr << "eigenValues = " << eigenValues << std::endl;
return EXIT_FAILURE;
}
}
}
// Now let's do something more involved...
tensor2(0,0) = 7.0;
tensor2(0,1) = 0.0;
tensor2(0,2) = 3.0;
tensor2(1,0) = 0.0; // overrides (0,1)
tensor2(1,1) = 0.0;
tensor2(1,2) = 0.0;
tensor2(2,0) = 3.0; // overrides (0,2)
tensor2(2,1) = 0.0; // overrides (1,2)
tensor2(2,2) = 7.0;
std::cout << "DiffusionTensor3D = " << std::endl;
std::cout << tensor2 << std::endl;
tensor2.ComputeEigenAnalysis( eigenValues, eigenVectors );
std::cout << "EigenValues = " << std::endl;
std::cout << eigenValues << std::endl;
std::cout << "EigenVectors = " << std::endl;
std::cout << eigenVectors << std::endl;
{
Double3DTensorType::EigenValuesArrayType expectedValues;
expectedValues[0] = 0.0;
expectedValues[1] = 4.0;
expectedValues[2] = 10.0;
for(unsigned int i=0; i<3; i++)
{
if( fabs( expectedValues[i] - eigenValues[i] ) > tolerance )
{
std::cerr << "Eigenvalue computation failed" << std::endl;
std::cerr << "expectedValues = " << expectedValues << std::endl;
std::cerr << "eigenValues = " << eigenValues << std::endl;
return EXIT_FAILURE;
}
}
}
// Now let's do one where we know the rotation...
tensor2(0,0) = 9.0;
tensor2(0,1) = 0.0;
tensor2(0,2) = 7.0;
tensor2(1,0) = 0.0; // overrides (0,1)
tensor2(1,1) = 0.0;
tensor2(1,2) = 0.0;
tensor2(2,0) = 7.0; // overrides (0,2)
tensor2(2,1) = 0.0; // overrides (1,2)
tensor2(2,2) = 3.0;
std::cout << "DiffusionTensor3D = " << std::endl;
std::cout << tensor2 << std::endl;
tensor2.ComputeEigenAnalysis( eigenValues, eigenVectors );
std::cout << "EigenValues = " << std::endl;
std::cout << eigenValues << std::endl;
std::cout << "EigenVectors = " << std::endl;
std::cout << eigenVectors << std::endl;
{
Double3DTensorType::EigenValuesArrayType expectedValues;
expectedValues[0] = -1.61577;
expectedValues[1] = 0.00000;
expectedValues[2] = 13.61580;
for(unsigned int i=0; i<3; i++)
{
if( fabs( expectedValues[i] - eigenValues[i] ) > tolerance )
{
std::cerr << "Eigenvalue computation failed" << std::endl;
std::cerr << "expectedValues = " << expectedValues << std::endl;
std::cerr << "eigenValues = " << eigenValues << std::endl;
return EXIT_FAILURE;
}
}
}
}
// Test GetTrace() and GetFractionalAnisotropy methods
{
typedef itk::DiffusionTensor3D<double> Double3DTensorType;
typedef Double3DTensorType::AccumulateValueType AccumulateValueType;
typedef Double3DTensorType::RealValueType RealValueType;
Double3DTensorType tensor3;
tensor3(0,0) = 19.0;
tensor3(0,1) = 0.0;
tensor3(0,2) = 0.0;
tensor3(1,0) = 0.0; // overrides (0,1)
tensor3(1,1) = 23.0;
tensor3(1,2) = 0.0;
tensor3(2,0) = 7.0; // overrides (0,2)
tensor3(2,1) = 0.0; // overrides (1,2)
tensor3(2,2) = 29.0;
AccumulateValueType expectedTrace =
itk::NumericTraits< AccumulateValueType >::Zero;
expectedTrace += tensor3(0,0);
expectedTrace += tensor3(1,1);
expectedTrace += tensor3(2,2);
const double tolerance = 1e-4;
AccumulateValueType computedTrace = tensor3.GetTrace();
if( fabs( computedTrace - expectedTrace ) > tolerance )
{
std::cerr << "Error computing the Trace" << std::endl;
std::cerr << "Expected trace = " << expectedTrace << std::endl;
std::cerr << "Computed trace = " << computedTrace << std::endl;
return EXIT_FAILURE;
}
// Test the value of internal scalar product
const RealValueType expectedInternalScalarProduct = 1829;
RealValueType computedInternalScalarProduct = tensor3.GetInnerScalarProduct();
if( fabs( computedInternalScalarProduct - expectedInternalScalarProduct ) > tolerance )
{
std::cerr << "Error computing Internal Scalar Product" << std::endl;
std::cerr << "Expected = " << expectedInternalScalarProduct << std::endl;
std::cerr << "Computed = " << computedInternalScalarProduct << std::endl;
return EXIT_FAILURE;
}
// Test the value of Fractional Anisotropy
const RealValueType expectedFractionalAnisotropy = 0.349177;
RealValueType computedFractionalAnisotropy = tensor3.GetFractionalAnisotropy();
if( fabs( computedFractionalAnisotropy - expectedFractionalAnisotropy ) > tolerance )
{
std::cerr << "Error computing Fractional Anisotropy" << std::endl;
std::cerr << "Expected = " << expectedFractionalAnisotropy << std::endl;
std::cerr << "Computed = " << computedFractionalAnisotropy << std::endl;
return EXIT_FAILURE;
}
// Test the value of Relative Anisotropy
const RealValueType expectedRelativeAnisotropy = 1.9044;
RealValueType computedRelativeAnisotropy = tensor3.GetRelativeAnisotropy();
if( fabs( computedRelativeAnisotropy - expectedRelativeAnisotropy ) > tolerance )
{
std::cerr << "Error computing Relative Anisotropy" << std::endl;
std::cerr << "Expected = " << expectedRelativeAnisotropy << std::endl;
std::cerr << "Computed = " << computedRelativeAnisotropy << std::endl;
return EXIT_FAILURE;
}
} // end of Test GetTrace() method
return EXIT_SUCCESS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -