📄 itkcenteredrigid2dtransformtest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkCenteredRigid2DTransformTest.cxx,v $
Language: C++
Date: $Date: 2008-06-29 13:13:37 $
Version: $Revision: 1.15 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <iostream>
#include "itkCenteredRigid2DTransform.h"
#include "vnl/vnl_vector_fixed.h"
#include "itkVector.h"
#include "itkTransformFileWriter.h"
#include "itkTransformFileReader.h"
#include "itkTransformFactory.h"
namespace
{
bool CheckEqual(
itk::Point<double,2> p1,
itk::Point<double,2> p2 )
{
const double epsilon = 1e-5;
for( unsigned int i = 0; i < 2; i++ )
{
if( fabs( p1[i] - p2[i] ) > epsilon )
{
std::cout << p1 << " != " << p2 << ":[ FAILED ]" << std::endl;
return false;
}
}
std::cout << p1 << " == " << p2 << ":[ PASSED ]" << std::endl;
return true;
}
}
int itkCenteredRigid2DTransformTest(int argc,char *argv[] )
{
if (argc < 2)
{
std::cout << "Usage: " << argv[0] << " logFilename" << std::endl;
return EXIT_FAILURE;
}
std::cout << "==================================" << std::endl;
std::cout << "Testing CenteredRigid 2D Transform" << std::endl << std::endl;
const double epsilon = 1e-10;
const unsigned int N = 2;
bool Ok = true;
typedef itk::CenteredRigid2DTransform<double> CenteredRigidTransformType;
CenteredRigidTransformType::Pointer transform = CenteredRigidTransformType::New();
// 15 degrees in radians
const double angle = 15.0 * atan( 1.0f ) / 45.0;
const double sinth = sin( angle );
const double costh = cos( angle );
std::cout << "Testing Rotation:";
transform->SetAngle(angle);
// Rotate an itk::Point
CenteredRigidTransformType::InputPointType::ValueType pInit[2] = {10,10};
CenteredRigidTransformType::InputPointType p = pInit;
CenteredRigidTransformType::InputPointType q;
q[0] = p[0] * costh - p[1] * sinth;
q[1] = p[0] * sinth + p[1] * costh;
CenteredRigidTransformType::OutputPointType r;
r = transform->TransformPoint( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i]- r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error rotating point : " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << " [ PASSED ] " << std::endl;
}
std::cout << "Testing Translation:";
transform->SetAngle(0);
CenteredRigidTransformType::OffsetType::ValueType ioffsetInit[2] = {1,4};
CenteredRigidTransformType::OffsetType ioffset = ioffsetInit;
transform->SetOffset( ioffset );
q = p + ioffset;
r = transform->TransformPoint( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i]- r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error translating point: " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << " [ PASSED ] " << std::endl;
}
{
std::cout << "Testing Inverse:";
// Populate the transform with some parameters
CenteredRigidTransformType::Pointer transform2 = CenteredRigidTransformType::New();
const double a = 0.175;
transform2->SetAngle( a);
CenteredRigidTransformType::InputPointType c;
c[0] = 13.456;
c[1] = 45.890;
transform2->SetCenter( c );
CenteredRigidTransformType::OutputVectorType t;
t[0] = 9.873;
t[1] = 40.312;
transform2->SetTranslation( t );
// Transform point p1 to obtain p2
CenteredRigidTransformType::InputPointType p1;
p1[0] = 5.63;
p1[1] = 9.02;
CenteredRigidTransformType::OutputPointType p2 =
transform2->TransformPoint( p1 );
// Get inverse transform and transform point p2 to obtain point p3
CenteredRigidTransformType::Pointer inverse;
transform2->CloneInverseTo( inverse );
CenteredRigidTransformType::OutputPointType p3 =
inverse->TransformPoint( p2 );
// Check that point p3 is the same as point p1
Ok = true;
for ( unsigned int i = 0; i < N; i++ )
{
if ( fabs( p1[i] - p3[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error in inverse computation" << std::endl;
std::cerr << "Result should be : " << p1 << std::endl;
std::cerr << "Reported Result is : " << p3 << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << " [ PASSED ] " << std::endl;
}
}
{
// Test instantiation, inverse computation, back transform etc.
typedef CenteredRigidTransformType TransformType;
TransformType::Pointer t1 = TransformType::New();
// Set parameters
TransformType::ParametersType parameters( t1->GetNumberOfParameters() );
parameters[0] = -21.0 / 180.0 * vnl_math::pi;
parameters[1] = 12.0;
parameters[2] = -8.9;
parameters[3] = 67.8;
parameters[4] = -0.2;
t1->SetParameters( parameters );
TransformType::InputPointType p1;
p1[0] = 96.8;
p1[1] = -3.2;
TransformType::InputPointType p2;
p2 = t1->TransformPoint( p1 );
// Test inverse
TransformType::Pointer t2;
t1->CloneInverseTo( t2 );
TransformType::InputPointType p3;
p3 = t2->TransformPoint( p2 );
std::cout << "Test CloneInverseTo(): ";
if( !CheckEqual( p1, p3 ) )
{
return EXIT_FAILURE;
}
TransformType::Pointer t2dash = TransformType::New();
t1->GetInverse( t2dash );
TransformType::InputPointType p3dash;
p3dash = t2dash->TransformPoint( p2 );
std::cout << "Test GetInverse(): ";
if( !CheckEqual( p1, p3dash ) )
{
return EXIT_FAILURE;
}
// Test clone
TransformType::Pointer t3;
t1->CloneTo( t3 );
TransformType::InputPointType p4;
p4 = t3->TransformPoint( p1 );
std::cout << "Test Clone(): ";
if( !CheckEqual( p2, p4 ) )
{
return EXIT_FAILURE;
}
// Test compose
TransformType::Pointer t4 = TransformType::New();
parameters[0] = 14.7 / 180.0 * vnl_math::pi;
parameters[1] = 4.0;
parameters[2] = 4.0;
parameters[3] = 67.1;
parameters[4] = 67.1;
t4->SetParameters( parameters );
TransformType::Pointer t5;
t1->CloneTo( t5 );
t5->Compose( t4, false );
TransformType::InputPointType p5, p6, p7;
p5 = t1->TransformPoint( p1 );
p6 = t4->TransformPoint( p5 );
p7 = t5->TransformPoint( p1 );
std::cout << "Test Compose(.,false): ";
if( !CheckEqual( p6, p7 ) )
{
return EXIT_FAILURE;
}
t1->CloneTo( t5 );
t5->Compose( t4, true );
p5 = t4->TransformPoint( p1 );
p6 = t1->TransformPoint( p5 );
p7 = t5->TransformPoint( p1 );
std::cout << "Test Compose(.,true): ";
if( !CheckEqual( p6, p7 ) )
{
return EXIT_FAILURE;
}
// Really test the jacobian
std::cout << "Testing Jacobian: ";
TransformType::JacobianType jacobian;
jacobian = t4->GetJacobian( p1 );
TransformType::JacobianType approxJacobian = jacobian;
for( unsigned int k = 0; k < t1->GetNumberOfParameters(); k++ )
{
const double delta = 0.001;
TransformType::ParametersType plusParameters;
TransformType::ParametersType minusParameters;
plusParameters = parameters;
minusParameters = parameters;
plusParameters[k] += delta;
minusParameters[k] -= delta;
TransformType::OutputPointType plusPoint;
TransformType::OutputPointType minusPoint;
t4->SetParameters( plusParameters );
plusPoint = t4->TransformPoint( p1 );
t4->SetParameters( minusParameters );
minusPoint = t4->TransformPoint( p1 );
for( unsigned int j = 0; j < 2; j++ )
{
double approxDerivative = ( plusPoint[j] - minusPoint[j] ) / ( 2.0 * delta );
double computedDerivative = jacobian[j][k];
approxJacobian[j][k] = approxDerivative;
if ( vnl_math_abs( approxDerivative - computedDerivative ) > 1e-4 )
{
std::cerr << "Error computing Jacobian [" << j << "][" << k << "]" << std::endl;
std::cerr << "Result should be: " << approxDerivative << std::endl;
std::cerr << "Reported result is: " << computedDerivative << std::endl;
std::cerr << " [ FAILED ] " << std::endl;
return EXIT_FAILURE;
} // if
} // for j
} // for k
std::cout << " [ PASSED ] " << std::endl;
}
{
// Test IO
typedef CenteredRigidTransformType TransformType;
itk::TransformFactory<TransformType>::RegisterTransform();
TransformType::Pointer t1 = TransformType::New();
TransformType::ParametersType po, pf;
po = t1->GetParameters();
for( unsigned int j = 0; j < po.GetSize(); j++ )
{
po[j] = static_cast<double>( j ) + 1.0;
}
po[0] *= vnl_math::pi / 180.0;
t1->SetParameters( po );
pf = t1->GetFixedParameters();
for( unsigned int j = 0; j < pf.GetSize(); j++ )
{
pf[j] = static_cast<double>( j ) + 1.0;
}
t1->SetFixedParameters( pf );
itk::TransformFileWriter::Pointer writer;
itk::TransformFileReader::Pointer reader;
writer = itk::TransformFileWriter::New();
reader = itk::TransformFileReader::New();
writer->SetFileName( argv[1] );
reader->SetFileName( argv[1] );
writer->AddTransform( t1 );
try
{
writer->Update();
reader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Error while saving the transforms" << std::endl;
std::cerr << excp << std::endl;
std::cout << "[FAILED]" << std::endl;
return EXIT_FAILURE;
}
itk::TransformFileReader::TransformListType *list;
list = reader->GetTransformList();
// check the transformed points are the same
std::cout << "Test Transform IO: ";
TransformType::InputPointType ip;
ip[0] = 8.0;
ip[1] = 9.0;
TransformType * ptr;
ptr = dynamic_cast< TransformType * >( list->front().GetPointer() );
if( !ptr )
{
std::cout << "Can't cast back to the right type!" << std::endl;
return EXIT_FAILURE;
}
TransformType::Pointer t2 = ptr;
std::cout << "Transform written:" << std::endl;
t1->Print(std::cout);
std::cout << "Transform read:" << std::endl;
t2->Print(std::cout);
TransformType::OutputPointType op1, op2;
op1 = t1->TransformPoint( ip );
op2 = t2->TransformPoint( ip );
if( !CheckEqual( op1, op2 ) )
{
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -