📄 itkmedialnodecorrespondencestest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkMedialNodeCorrespondencesTest.cxx,v $
Language: C++
Date: $Date: 2003-12-15 14:13:21 $
Version: $Revision: 1.7 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <stdio.h>
// Native ITK stuff
#include "itkSize.h"
#include "itkIndex.h"
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkPoint.h"
// Blox stuff
#include "itkBloxBoundaryPointImage.h"
#include "itkBloxCoreAtomImage.h"
#include "itkGradientImageToBloxBoundaryPointImageFilter.h"
#include "itkBloxBoundaryPointToCoreAtomImageFilter.h"
// Spatial function stuff
#include "itkSphereSpatialFunction.h"
#include "itkFloodFilledSpatialFunctionConditionalIterator.h"
// DOG gradient related stuff
#include "itkBinomialBlurImageFilter.h"
#include "itkDifferenceOfGaussiansGradientImageFilter.h"
// Medial node correspondence related stuff
#include "itkMatrixResizeableDataObject.h"
#include "itkCoreAtomImageToDistanceMatrixProcess.h"
#include "itkCoreAtomImageToUnaryCorrespondenceMatrixProcess.h"
#include "itkMedialNodePairCorrespondenceProcess.h"
#include "itkMedialNodeTripletCorrespondenceProcess.h"
// Main for testing various classes related to medial node (clustered and
// statistically analyzed core atoms) correspondences. There are to be 4 tests
// included. Specifically tests for, itkCoreAtomImageToDistanceMatrixProcess,
// itkCoreAtomImageToUnaryCorrespondenceMatrixProcess,
// itkMedialNodePairCorrespondenceProcess, and itkMedialNodeTripletCorrespondenceProcess.
// These tests explicitely test higher level processing as well as lower level
// processing with auxillary classes. Each test requires two images, boundary points
// and core atoms. They were all included in this test to avoid redundant code
// in the tests. Each test returns EXIT_FAILURE upon failing. If all the tests
// pass and EXIT_SUCCESS is returned.
int itkMedialNodeCorrespondencesTest(int, char *[])
{
const unsigned int dim = 3;
//-----------------Create a new input image--------------------
// Image size and spacing parameters
unsigned long sourceImageSize[] = { 20,20,20 };
double sourceImageSpacing[] = { 1.0,1.0,1.0 };
double sourceImageOrigin[] = { 0,0,0 };
int intensity1 = 255;
int intensity2 = 128;
typedef itk::BloxCoreAtomImage<dim> CoreAtomType;
CoreAtomType::Pointer bloxCoreAtomImage1 = CoreAtomType::New();
CoreAtomType::Pointer bloxCoreAtomImage2 = CoreAtomType::New();
typedef itk::Image< unsigned char, dim > ImageType;
typedef itk::SphereSpatialFunction<dim> FunctionType;
typedef FunctionType::InputType FunctionPositionType;
typedef itk::FloodFilledSpatialFunctionConditionalIterator <ImageType, FunctionType> ItType;
typedef ImageType OutputType;
typedef itk::DifferenceOfGaussiansGradientImageFilter<OutputType, double> DOGFilterType;
typedef itk::GradientImageToBloxBoundaryPointImageFilter<DOGFilterType::TOutputImage> TBPFilter;
typedef TBPFilter::TOutputImage BloxBPImageType;
typedef itk::BloxCoreAtomImage<dim> CoreAtomType;
typedef itk::BloxBoundaryPointToCoreAtomImageFilter<dim> TCAFilter;
typedef TCAFilter::TOutputImage BloxCAImageType;
// Create a sphere and find core atoms. This loop creates two sets of data and
// core atom images. Required for Medial Node Correspondence testing.
for(int i = 0; i < 2; i++)
{
// Creates the sourceImage (but doesn't set the size or allocate memory)
ImageType::Pointer sourceImage = ImageType::New();
sourceImage->SetOrigin(sourceImageOrigin);
sourceImage->SetSpacing(sourceImageSpacing);
printf("New sourceImage created\n");
//-----The following block allocates the sourceImage-----
// Create a size object native to the sourceImage type
ImageType::SizeType sourceImageSizeObject;
// Set the size object to the array defined earlier
sourceImageSizeObject.SetSize( sourceImageSize );
// Create a region object native to the sourceImage type
ImageType::RegionType largestPossibleRegion;
// Resize the region
largestPossibleRegion.SetSize( sourceImageSizeObject );
// Set the largest legal region size (i.e. the size of the whole sourceImage) to what we just defined
sourceImage->SetLargestPossibleRegion( largestPossibleRegion );
// Set the buffered region
sourceImage->SetBufferedRegion( largestPossibleRegion );
// Set the requested region
sourceImage->SetRequestedRegion( largestPossibleRegion );
// Now allocate memory for the sourceImage
sourceImage->Allocate();
printf("New sourceImage allocated\n");
// Initialize the image to hold all 0's
itk::ImageRegionIterator<ImageType> it =
itk::ImageRegionIterator<ImageType>(sourceImage, largestPossibleRegion);
for(it.GoToBegin(); !it.IsAtEnd(); ++it)
{
it.Set(0);
}
//---------Create and initialize a spatial function-----------
// Create and initialize a new sphere function
FunctionType::Pointer spatialFunc = FunctionType::New();
spatialFunc->SetRadius( 5 );
FunctionPositionType center;
center[0]=10;
center[1]=10;
center[2]=10;
spatialFunc->SetCenter(center);
printf("Sphere spatial function created\n");
//---------Create and initialize a spatial function iterator-----------
ImageType::IndexType seedPos;
const ImageType::IndexValueType pos[] = {10,10,10};
seedPos.SetIndex(pos);
ItType sfi = ItType(sourceImage, spatialFunc, seedPos);
// Iterate through the entire image and set interior pixels to 255
for( ; !( sfi.IsAtEnd() ); ++sfi)
{
if(i==0)
{
//std::cerr << "Set Intensity 1" << std::endl;
sfi.Set(intensity1);
}
else
{
//std::cerr << "Set Intensity 2" << std::endl;
sfi.Set(intensity2);
}
}
printf("Spatial function iterator created, sphere drawn\n");
//--------------------Do blurring and edge detection----------------
// Create a binomial blur filter
itk::BinomialBlurImageFilter<ImageType, OutputType>::Pointer binfilter;
binfilter = itk::BinomialBlurImageFilter<ImageType, OutputType>::New();
sourceImage->SetRequestedRegion(sourceImage->GetLargestPossibleRegion() );
// Set filter parameters
binfilter->SetInput(sourceImage);
if(i == 0)
binfilter->SetRepetitions(4);
else
binfilter->SetRepetitions(3);
// Set up the output of the filter
ImageType::Pointer blurredImage = binfilter->GetOutput();
// Create a differennce of gaussians gradient filter
DOGFilterType::Pointer DOGFilter = DOGFilterType::New();
// We're filtering the output of the binomial filter
DOGFilter->SetInput(blurredImage);
// Get the output of the gradient filter
DOGFilterType::TOutputImage::Pointer gradientImage = DOGFilter->GetOutput();
//------------------------Blox Boundary Point Analysis-------------------------
TBPFilter::Pointer bpFilter= TBPFilter::New();
bpFilter->SetThreshold(10);
bpFilter->SetInput( DOGFilter->GetOutput() );
BloxBPImageType::Pointer bloxBoundaryPointImage = bpFilter->GetOutput();
bpFilter->Update();
//----------------------Find core atoms-------------------------
CoreAtomType::Pointer coreAtomImage = CoreAtomType::New();
TCAFilter::Pointer caFilter = TCAFilter::New();
caFilter->SetInput(bloxBoundaryPointImage);
caFilter->SetDistanceMin(8.0);
caFilter->SetDistanceMax(12.0);
if(i == 0)
caFilter->SetEpsilon(0.05);
else
caFilter->SetEpsilon(0.05);
caFilter->SetPolarity(0);
BloxCAImageType::Pointer bloxCoreAtomImage = caFilter->GetOutput();
caFilter->Update();
// Test the macros in the image
bloxCoreAtomImage->GetMedialNodeCount();
bloxCoreAtomImage->GetNodePointerList();
//--------------------Analyze core atom population---------------------
std::cout << "Performing Eigenanalysis\n";
bloxCoreAtomImage->DoEigenanalysis();
//-----------------------Do core atom voting---------------------------
std::cout << "Doing core atom voting\n";
bloxCoreAtomImage->DoCoreAtomVoting();
if(i == 0)
{bloxCoreAtomImage1 = bloxCoreAtomImage;}
else
{bloxCoreAtomImage2 = bloxCoreAtomImage;}
}
int numberNodes1 = bloxCoreAtomImage1->GetMedialNodeCount();
int numberNodes2 = bloxCoreAtomImage2->GetMedialNodeCount();
//-------Test CoreAtomImageToDistanceMatrixProcess-----------
std::cout << "Testing CoreAtomImageToDistanceMatrixProcess" << std::endl;
itk::CoreAtomImageToDistanceMatrixProcess<BloxCAImageType>::Pointer distanceMatrixProcess;
distanceMatrixProcess = itk::CoreAtomImageToDistanceMatrixProcess<BloxCAImageType>::New();
// Stores the distances between nodes in an image.
typedef itk::MatrixResizeableDataObject<double> MatrixType;
typedef MatrixType::Pointer DistanceMatrixPointer;
DistanceMatrixPointer distanceMatrix = MatrixType::New();
DistanceMatrixPointer correctDistance = MatrixType::New(); // The ground truth values for this test
// Set the correct values of the distance matrix to test against.
correctDistance->set_size(numberNodes1, numberNodes1);
correctDistance->put(0,0,0);
correctDistance->put(0,1,2.42792);
correctDistance->put(0,2,2.42792);
correctDistance->put(0,3,3.62853);
correctDistance->put(0,4,2.42792);
correctDistance->put(0,5,3.62853);
correctDistance->put(0,6,3.62853);
correctDistance->put(1,0,2.42792);
correctDistance->put(1,1,0);
correctDistance->put(1,2,3.7268);
correctDistance->put(1,3,2.78767);
correctDistance->put(1,4,3.7268);
correctDistance->put(1,5,2.78767);
correctDistance->put(1,6,4.94715);
correctDistance->put(2,0,2.42792);
correctDistance->put(2,1,3.7268);
correctDistance->put(2,2,0);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -