⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itkmahalanobisdistancethresholdimagefunctiontest.cxx

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 CXX
字号:
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkMahalanobisDistanceThresholdImageFunctionTest.cxx,v $
  Language:  C++
  Date:      $Date: 2004-08-08 13:39:21 $
  Version:   $Revision: 1.5 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include <stdio.h>

#include "itkMahalanobisDistanceThresholdImageFunction.h"
#include "itkImage.h"
#include "itkRGBPixel.h"

int itkMahalanobisDistanceThresholdImageFunctionTest(int, char* [] )
{

  const unsigned int          Dimension = 3;
  typedef unsigned char       PixelComponentType; 
  typedef itk::RGBPixel<PixelComponentType>  PixelType; 

  typedef itk::Image< PixelType, Dimension > ImageType;
  typedef itk::MahalanobisDistanceThresholdImageFunction< ImageType > FunctionType;

  // Create and allocate the image
  ImageType::Pointer      image = ImageType::New();
  ImageType::SizeType     size;
  ImageType::IndexType    start;
  ImageType::RegionType   region;
 
  size[0] = 50;
  size[1] = 50;
  size[2] = 50;

  start.Fill( 0 );
    
  region.SetIndex( start );
  region.SetSize( size );

  image->SetRegions( region );
  image->Allocate();

  ImageType::PixelType initialValue;

  initialValue[0] = 11;
  initialValue[1] = 22;
  initialValue[2] = 33;

  image->FillBuffer( initialValue );

  FunctionType::Pointer function = FunctionType::New();

  function->SetInputImage( image );

  const double threshold = 5.0;
  function->SetThreshold( threshold ); 


  typedef vnl_matrix<double> CovarianceType;
  typedef vnl_vector<double> MeanType;

  CovarianceType Covariance( Dimension, Dimension );
  MeanType  Mean( Dimension );

  Mean[0] = 10.0;
  Mean[1] = 20.0;
  Mean[2] = 30.0;

  Covariance.fill( 0.0 );
  Covariance[0][0] = 100.0;
  Covariance[1][1] = 200.0;
  Covariance[2][2] = 300.0;

  function->SetCovariance( Covariance );
  function->SetMean( Mean );
  
  ImageType::IndexType    index;

  index[0] = 25;
  index[1] = 25;
  index[2] = 25;

  FunctionType::OutputType  belongs;

  belongs = function->EvaluateAtIndex( index );
  std::cout << "function->EvaluateAtIndex( index ): " << belongs << std::endl;
  if( !belongs )
    {
    std::cerr << "Error in EvaluateAtIndex() we were expecting true and got false" << std::endl;
    return EXIT_FAILURE;
    }

  const double distance = function->EvaluateDistanceAtIndex( index );
  std::cout << "function->EvaluateDistanceAtIndex( index ): " << distance << std::endl;

  const double expectedDistance = 0.244949;
  if( fabs(distance - expectedDistance) > 1e-5 )
    {
    std::cerr << "Error in distance computation in EvaluateDistanceAtIndex() !!" << std::endl;
    std::cerr << "Expected distance value = " << expectedDistance << std::endl;
    std::cerr << "Distance obtained value = " << distance << std::endl;
    return EXIT_FAILURE;
    }
  
  // Test Evaluate
  FunctionType::PointType point;
  point[0] = 25;
  point[1] = 25;
  point[2] = 25;
  FunctionType::OutputType belongs2;
  belongs2 = function->Evaluate(point);
  std::cout << "function->Evaluate(point): " << belongs2 << std::endl;

  if( !belongs2 )
    {
    std::cerr << "Error in Evaluate() we were expecting true and got false" << std::endl;
    return EXIT_FAILURE;
    }


  const double distance2 = function->EvaluateDistance(point);
  std::cout << "function->EvaluateDistance(point): " << distance2 << std::endl;

  if( fabs(distance2 - expectedDistance) > 1e-5 )
    {
    std::cerr << "Error in distance computation in EvaluateDistance() !!" << std::endl;
    std::cerr << "Expected distance value = " << expectedDistance << std::endl;
    std::cerr << "Distance obtained value = " << distance2 << std::endl;
    return EXIT_FAILURE;
    }
  

  // Test EvaluateAtContinuousIndex
  FunctionType::ContinuousIndexType cindex;
  cindex[0] = 25;
  cindex[1] = 25;
  cindex[2] = 25;
  FunctionType::OutputType belongs3;
  belongs3 = function->EvaluateAtContinuousIndex(cindex);
  std::cout << "function->EvaluateAtContinuousIndex(cindex): " << belongs3 << std::endl;

  if( !belongs3 )
    {
    std::cerr << "Error in EvaluateAtContinuousIndex() we were expecting true and got false" << std::endl;
    return EXIT_FAILURE;
    }


  // Test GetConstReferenceMacro
  const double & getThreshold = function->GetThreshold();
  std::cout << "function->GetThreshold(): " << getThreshold << std::endl;
  if( fabs( threshold - getThreshold ) > 1e-9 )
    {
    std::cerr << "Error: Set/Get Threshold do not match" << std::endl;
    return EXIT_FAILURE;
    }


  // Exercise GetMean() and GetCovariance()
  Mean       = function->GetMean();
  Covariance = function->GetCovariance();
  

  std::cout << "Test PASSED ! " << std::endl;
  return EXIT_SUCCESS;

}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -