⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itkimageregistrationmethodtest.cxx

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 CXX
字号:
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkImageRegistrationMethodTest.cxx,v $
  Language:  C++
  Date:      $Date: 2008-05-08 15:21:49 $
  Version:   $Revision: 1.19 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifdef _MSC_VER
#pragma warning ( disable : 4786 )
#endif

#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"

#include "itkTextOutput.h"

/** 
 *  This program test one instantiation of the itk::ImageRegistrationMethod class
 * 
 *  This file tests initialization errors.
 */ 

int itkImageRegistrationMethodTest(int, char* [] )
{

  itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());

  bool pass;

  const unsigned int dimension = 3;

  // Fixed Image Type
  typedef itk::Image<float,dimension>                    FixedImageType;

  // Moving Image Type
  typedef itk::Image<char,dimension>                     MovingImageType;

  // Transform Type
  typedef itk::TranslationTransform< double, dimension > TransformType;

  // Optimizer Type
  typedef itk::RegularStepGradientDescentOptimizer       OptimizerType;

  // Metric Type
  typedef itk::MeanSquaresImageToImageMetric< 
                                    FixedImageType, 
                                    MovingImageType >    MetricType;

  // Interpolation technique
  typedef itk:: LinearInterpolateImageFunction< 
                                    MovingImageType,
                                    double          >    InterpolatorType;

  // Registration Method
  typedef itk::ImageRegistrationMethod< 
                                    FixedImageType, 
                                    MovingImageType >    RegistrationType;


  MetricType::Pointer         metric        = MetricType::New();
  TransformType::Pointer      transform     = TransformType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  FixedImageType::Pointer     fixedImage    = FixedImageType::New();  
  MovingImageType::Pointer    movingImage   = MovingImageType::New();  
  InterpolatorType::Pointer   interpolator  = InterpolatorType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();

  FixedImageType::SizeType    size;
  size.Fill( 4 );  // the size of image have to be at least 4 in each dimension to
                   // compute gradient image inside the metric.
  FixedImageType::RegionType  region( size );
  fixedImage->SetRegions( region );
  fixedImage->Allocate();
  fixedImage->FillBuffer( 3.0 );

  movingImage->SetRegions( region );
  movingImage->Allocate();
  movingImage->FillBuffer( 4 );
  
  registration->SetMetric(        metric        );
  registration->SetOptimizer(     optimizer     );
  registration->SetTransform(     transform     );
  registration->SetFixedImage(    fixedImage    );
  registration->SetMovingImage(   movingImage   );
  registration->SetInterpolator(  interpolator  );

  // Exercise Get methods
  std::cout << "metric: " << registration->GetMetric() << std::endl;
  std::cout << "optimizer: " << registration->GetOptimizer() << std::endl;
  std::cout << "transform: " << registration->GetTransform() << std::endl;
  std::cout << "fixed image: " << registration->GetFixedImage() << std::endl;
  std::cout << "moving image: " << registration->GetMovingImage() << std::endl;
  std::cout << "interpolator: " << registration->GetInterpolator() << std::endl;

  std::cout << "initial parameters: ";
  std::cout << registration->GetInitialTransformParameters() << std::endl;

  typedef RegistrationType::ParametersType ParametersType;
  ParametersType initialParameters( transform->GetNumberOfParameters() );
  initialParameters.Fill(0);

  ParametersType badParameters( 2 );
  badParameters.Fill( 5 );

  registration->SetInitialTransformParameters( initialParameters );

  std::cout << registration;
  /****************************************************
   * Test out initialization errors
   ****************************************************/

#define TEST_INITIALIZATION_ERROR( ComponentName, badComponent, goodComponent ) \
  registration->Set##ComponentName( badComponent ); \
  try \
    { \
    pass = false; \
    registration->Update(); \
    } \
  catch( itk::ExceptionObject& err ) \
    { \
    std::cout << "Caught expected ExceptionObject" << std::endl; \
    std::cout << err << std::endl; \
    pass = true; \
    } \
  registration->Set##ComponentName( goodComponent ); \
  \
  if( !pass ) \
    { \
    std::cout << "Test failed." << std::endl; \
    return EXIT_FAILURE; \
    } 

  TEST_INITIALIZATION_ERROR( InitialTransformParameters, badParameters, initialParameters );
  TEST_INITIALIZATION_ERROR( Metric, NULL, metric );
  TEST_INITIALIZATION_ERROR( Optimizer, NULL, optimizer );
  TEST_INITIALIZATION_ERROR( Transform, NULL, transform );
  TEST_INITIALIZATION_ERROR( FixedImage, NULL, fixedImage );
  TEST_INITIALIZATION_ERROR( MovingImage, NULL, movingImage );
  TEST_INITIALIZATION_ERROR( Interpolator, NULL, interpolator );

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;


}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -