⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itkgibbstest.cxx

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 CXX
字号:
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGibbsTest.cxx,v $
  Language:  C++
  Date:      $Date: 2008-02-03 04:05:34 $
  Version:   $Revision: 1.34 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#include <iostream>
#include <string>
#include <math.h>

#ifdef _MSC_VER
#pragma warning ( disable : 4786 )
#endif

#include "itkRGBGibbsPriorFilter.h"

#include "itkImageClassifierBase.h"
#include "itkImageGaussianModelEstimator.h"
#include "itkMahalanobisDistanceMembershipFunction.h"
#include "itkMinimumDecisionRule.h"

#include "itkSize.h"
#include "itkImage.h"
#include "itkVector.h"
#include "vnl/vnl_matrix_fixed.h"
#include "itkImageRegionIterator.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhood.h"

int itkGibbsTest(int, char*[] )
//int main() 
{
  std::cout<< "Gibbs Prior Test Begins: " << std::endl;

  const unsigned int IMGWIDTH     = 20;
  const unsigned int IMGHEIGHT    = 20;
  const unsigned int NFRAMES      = 1;
  const unsigned int NumberOfBands  = 1;
  const unsigned int ImageDimension = 3;
  const unsigned int NUM_CLASSES  = 3;
  const unsigned int MAX_NUM_ITER = 1;

  const unsigned short TestingImage [400]={
  297,277,317,289,300,312,306,283,282,308,308,342,335,325,315,300,304,318,307,308,

  319,276,311,282,309,273,308,277,296,313,308,333,322,317,302,330,339,340,325,315,

  272,316,296,299,298,310,271,319,315,280,338,342,349,349,330,319,313,314,342,301,

  274,274,312,282,277,303,313,300,275,292,341,336,324,310,337,323,322,347,337,305,

  296,272,304,304,281,304,302,284,315,270,325,349,337,317,308,332,324,303,334,325,

  291,272,289,317,289,310,305,316,292,307,307,343,341,329,309,308,340,323,307,325,

  274,286,282,291,270,296,274,288,274,275,341,301,325,333,321,305,347,346,327,317,

  282,315,270,314,290,304,297,304,309,290,309,338,341,319,325,344,301,349,328,302,

  314,289,296,270,274,277,317,280,278,285,315,347,314,316,307,336,341,335,330,337,

  281,291,317,317,302,304,272,277,318,319,305,322,337,334,327,303,321,310,334,314,

  321,311,328,326,331,308,325,348,334,346,309,316,308,349,322,349,304,331,304,321,

  346,302,344,314,311,338,320,310,331,330,322,323,329,331,342,341,331,336,328,318,

  309,336,327,345,312,309,330,334,329,317,324,304,337,330,331,334,340,307,328,343,

  345,330,336,302,333,348,315,328,315,308,305,343,342,337,307,316,303,303,332,341,

  327,322,320,314,323,325,307,316,336,315,341,347,343,336,315,347,306,303,339,326,

  330,347,303,343,332,316,305,325,311,314,345,327,333,305,324,318,324,339,325,319,

  334,326,330,319,300,335,305,331,343,324,337,324,319,339,327,317,347,331,308,318,

  306,337,347,330,301,316,302,331,306,342,343,329,336,342,300,306,335,330,310,303,

  308,331,317,315,318,333,340,340,326,330,339,345,307,331,320,312,306,342,303,321,

  328,315,327,311,315,305,340,306,314,339,344,339,337,330,318,342,311,343,311,312
  };

  typedef itk::Vector<unsigned short,NumberOfBands>  PixelType;
  typedef itk::Image<PixelType,ImageDimension>       VecImageType; 

  VecImageType::Pointer vecImage = VecImageType::New();

  typedef VecImageType::PixelType VecImagePixelType;

  VecImageType::SizeType vecImgSize = { {IMGWIDTH , IMGHEIGHT, NFRAMES} };

  VecImageType::IndexType index;
  index.Fill(0);

  VecImageType::RegionType region;

  region.SetSize( vecImgSize );
  region.SetIndex( index );

  vecImage->SetLargestPossibleRegion( region );
  vecImage->SetBufferedRegion( region );
  vecImage->Allocate();

  // setup the iterators
  typedef VecImageType::PixelType::VectorType VecPixelType;

  enum { VecImageDimension = VecImageType::ImageDimension };
  typedef itk::ImageRegionIterator< VecImageType > VecIterator;

  VecIterator outIt( vecImage, vecImage->GetBufferedRegion() );
  outIt.GoToBegin();

  //Set up the vector to store the image  data
  typedef VecImageType::PixelType     DataVector;
  DataVector   dblVec; 

  //--------------------------------------------------------------------------
  //Manually create and store each vector
  //--------------------------------------------------------------------------
  //Slice 1
  //Vector 1
  int i = 0;
  while ( !outIt.IsAtEnd() ) 
    { 
    dblVec[0] = (unsigned short) TestingImage[i];
//  dblVec[1] = (unsigned short) TestImage[i+65536];
//  dblVec[2] = (unsigned short) TestImage[i+65536*2];
    outIt.Set(dblVec); 
    ++outIt;
    i++;
    }

  //---------------------------------------------------------------
  //Generate the training data
  //---------------------------------------------------------------
  typedef itk::Image<unsigned short, ImageDimension > ClassImageType; 
  ClassImageType::Pointer classImage  = ClassImageType::New();

  ClassImageType::SizeType classImgSize = {{ IMGWIDTH , IMGHEIGHT, NFRAMES} };

  ClassImageType::IndexType classindex;
  classindex.Fill(0);

  ClassImageType::RegionType classregion;

  classregion.SetSize( classImgSize );
  classregion.SetIndex( classindex );

  classImage->SetLargestPossibleRegion( classregion );
  classImage->SetBufferedRegion( classregion );
  classImage->Allocate();

  // setup the iterators
  typedef ClassImageType::PixelType ClassImagePixelType;

  typedef  itk::ImageRegionIterator<ClassImageType>  ClassImageIterator;

  ClassImageIterator classoutIt( classImage, classImage->GetBufferedRegion() );
  classoutIt.GoToBegin();

  //--------------------------------------------------------------------------
  //Manually create and store each vector
  //--------------------------------------------------------------------------
  //Slice 1
  //Pixel no. 1

  i = 0;
  while ( !classoutIt.IsAtEnd() ) 
    {  
    if ( (i%IMGWIDTH<8) && (i%IMGWIDTH>4) && 
         (i/IMGWIDTH<8) && (i/IMGWIDTH>4)) 
      {
      classoutIt.Set( 1 );
      } 
    else 
      {
      if ( (i%IMGWIDTH<18) && (i%IMGWIDTH>14) && 
           (i/IMGWIDTH<18) && (i/IMGWIDTH>14))
        {
        classoutIt.Set( 2 );
        }
      else 
        {
        classoutIt.Set( 0 );
        }
      }
    ++classoutIt;
    i++;
    }

  //----------------------------------------------------------------------
  // Test code for the supervised classifier algorithm
  //----------------------------------------------------------------------

  //---------------------------------------------------------------------
  // Multiband data is now available in the right format
  //---------------------------------------------------------------------

  //----------------------------------------------------------------------
  //Set membership function (Using the statistics objects)
  //----------------------------------------------------------------------

  namespace stat = itk::Statistics;

  typedef stat::MahalanobisDistanceMembershipFunction< VecImagePixelType > 
    MembershipFunctionType ;
  typedef MembershipFunctionType::Pointer MembershipFunctionPointer ;

  typedef std::vector< MembershipFunctionPointer > 
    MembershipFunctionPointerVector;  

  //----------------------------------------------------------------------
  // Set the image model estimator (train the class models)
  //----------------------------------------------------------------------

  typedef itk::ImageGaussianModelEstimator<VecImageType,
    MembershipFunctionType, ClassImageType> 
    ImageGaussianModelEstimatorType;
  
  ImageGaussianModelEstimatorType::Pointer 
    applyEstimateModel = ImageGaussianModelEstimatorType::New();  

  applyEstimateModel->SetNumberOfModels(NUM_CLASSES);
  applyEstimateModel->SetInputImage(vecImage);
  applyEstimateModel->SetTrainingImage(classImage);  

  //Run the gaussian classifier algorithm
  applyEstimateModel->Update();
  applyEstimateModel->Print(std::cout); 

  MembershipFunctionPointerVector membershipFunctions = 
    applyEstimateModel->GetMembershipFunctions();

  //----------------------------------------------------------------------
  //Set the decision rule 
  //----------------------------------------------------------------------  
  typedef itk::DecisionRuleBase::Pointer DecisionRuleBasePointer;

  typedef itk::MinimumDecisionRule DecisionRuleType;
  DecisionRuleType::Pointer  
    myDecisionRule = DecisionRuleType::New();

  //----------------------------------------------------------------------
  // Set the classifier to be used and assigne the parameters for the 
  // supervised classifier algorithm except the input image which is 
  // grabbed from the MRF application pipeline.
  //----------------------------------------------------------------------
  //---------------------------------------------------------------------
  typedef VecImagePixelType MeasurementVectorType;

  typedef itk::ImageClassifierBase< VecImageType,
    ClassImageType > ClassifierType;

  typedef itk::ClassifierBase<VecImageType>::Pointer 
    ClassifierBasePointer;

  typedef ClassifierType::Pointer ClassifierPointer;
  ClassifierPointer myClassifier = ClassifierType::New();
  // Set the Classifier parameters
  myClassifier->SetNumberOfClasses(NUM_CLASSES);

  // Set the decison rule 
  myClassifier->
    SetDecisionRule((DecisionRuleBasePointer) myDecisionRule );

  //Add the membership functions
  for( unsigned int ii=0; ii<NUM_CLASSES; ii++ )
    {
    myClassifier->AddMembershipFunction( membershipFunctions[ii] );
    }

  //Set the Gibbs Prior labeller
  typedef itk::RGBGibbsPriorFilter<VecImageType,ClassImageType> GibbsPriorFilterType;
  GibbsPriorFilterType::Pointer applyGibbsImageFilter = GibbsPriorFilterType::New();

  // Set the MRF labeller parameters
  applyGibbsImageFilter->SetNumberOfClasses(NUM_CLASSES);
  applyGibbsImageFilter->SetMaximumNumberOfIterations(MAX_NUM_ITER);
//  applyGibbsImageFilter->SetErrorTollerance(0.00);
  applyGibbsImageFilter->SetClusterSize(10);
  applyGibbsImageFilter->SetBoundaryGradient(6);
  applyGibbsImageFilter->SetObjectLabel(1);
//  applyGibbsImageFilter->SetRecursiveNumber(1);
  applyGibbsImageFilter->SetCliqueWeight_1(5.0);
  applyGibbsImageFilter->SetCliqueWeight_2(5.0);
  applyGibbsImageFilter->SetCliqueWeight_3(5.0);
  applyGibbsImageFilter->SetCliqueWeight_4(5.0);
  applyGibbsImageFilter->SetCliqueWeight_5(5.0);
  applyGibbsImageFilter->SetCliqueWeight_6(0.0);
 
  applyGibbsImageFilter->SetInput(vecImage);
  applyGibbsImageFilter->SetClassifier( myClassifier ); 
 

  applyGibbsImageFilter->SetObjectThreshold(5.0);
  
  /** coverage */
  std::cout << applyGibbsImageFilter->GetNumberOfClasses() << std::endl;
  std::cout << applyGibbsImageFilter->GetMaximumNumberOfIterations() << std::endl;

  /** coverage */
  std::cout << applyGibbsImageFilter->GetCliqueWeight_1() << std::endl;
  std::cout << applyGibbsImageFilter->GetCliqueWeight_2() << std::endl;
  std::cout << applyGibbsImageFilter->GetCliqueWeight_3() << std::endl;
  std::cout << applyGibbsImageFilter->GetCliqueWeight_4() << std::endl;
  std::cout << applyGibbsImageFilter->GetCliqueWeight_5() << std::endl;
  std::cout << applyGibbsImageFilter->GetCliqueWeight_6() << std::endl;

  //Since a suvervised classifier is used, it requires a training image
  applyGibbsImageFilter->SetTrainingImage(classImage);  

  //Kick off the Gibbs labeller function
  applyGibbsImageFilter->Update();

  std::cout << "applyGibbsImageFilter: " << applyGibbsImageFilter;

  ClassImageType::Pointer  outClassImage = applyGibbsImageFilter->GetOutput();

  //Print the mrf labelled image
  ClassImageIterator labeloutIt( outClassImage, outClassImage->GetBufferedRegion() );

  int j0 = 0;
  int j1 = 0;
  while ( !labeloutIt.IsAtEnd() )
    {
    if (labeloutIt.Get() == 0)
      {
      j0++;
      }
  if (labeloutIt.Get() == 1)
    {
    j1++;
    }
  ++labeloutIt;
  }

  std::cout<< "j0:" << j0 << std::endl;
  std::cout<< "j1:" << j1 << std::endl;

//  FILE *output=fopen("new.raw", "wb");
//  fwrite(outImage, 2, IMGWIDTH*IMGHEIGHT, output);
//  fclose(output);
  //Verify if the results were as per expectation
  
  bool passTest;
/*  int j = 0;
  i = 0;
  labeloutIt.GoToBegin();
  while ( !labeloutIt.IsAtEnd() ) {
  if ((i%IMGWIDTH<10) && (i/IMGWIDTH<10) && (labeloutIt.Get()==1))
    j++;
  i++;
  ++labeloutIt;
  }
*/
  passTest = ((j1 > 285) && (j1 < 315));
  if( passTest ) 
    {
    std::cout<< "Gibbs Prior Test Passed" << std::endl;
    }
  else 
    {
    std::cout<< "Gibbs Prior Test failed" << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -