📄 itkimageregistrationmethodtest_13.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkImageRegistrationMethodTest_13.cxx,v $
Language: C++
Date: $Date: 2005-10-06 17:27:42 $
Version: $Revision: 1.19 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkImageRegistrationMethod.h"
#include "itkAffineTransform.h"
#include "itkMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkGradientDescentOptimizer.h"
#include "itkTextOutput.h"
#include "itkImageRegionIterator.h"
#include "itkCommandIterationUpdate.h"
namespace
{
double F( itk::Vector<double,3> & v );
}
/**
* This program test one instantiation of the itk::ImageRegistrationMethod class
*
* This file tests the combination of:
* - MutualInformation
* - AffineTransform
* - GradientDescentOptimizer
* - LinearInterpolateImageFunction
*
* The test image pattern consists of a 3D gaussian in the middle
* with some directional pattern on the outside.
* One image is scaled and shifted relative to the other.
*
* Notes:
* =======
* This example performs an affine registration
* between a moving (source) and fixed (target) image using mutual information.
* It uses the optimization method of Viola and Wells to find the
* best affine transform to register the moving image onto the fixed
* image.
*
* The mutual information value and its derivatives are estimated
* using spatial sampling. The performance
* of the registration depends on good choices of the parameters
* used to estimate the mutual information. Refer to the documentation
* for MutualInformationImageToImageMetric for details on these
* parameters and how to set them.
*
* The registration uses a simple stochastic gradient ascent scheme. Steps
* are repeatedly taken that are proportional to the approximate
* deriviative of the mutual information with respect to the affine
* transform parameters. The stepsize is governed by the LearningRate
* parameter.
*
* Since the parameters of the linear part is different in magnitude
* to the parameters in the offset part, scaling is required
* to improve convergence. The scaling can set via the optimizer.
*
* NB: In the Viola and Wells paper, the scaling is specified by
* using different learning rates for the linear and offset part.
* The following formula translate their scaling parameters to
* those used in this framework:
*
* LearningRate = lambda_R
* TranslationScale = sqrt( lambda_T / lambda_R );
*
* In the optimizer's scale transform set the scaling for
* all the translation parameters to TranslationScale^{-2}.
* Set the scale for all other parameters to 1.0.
*
* Note: the optimization performance can be improved by
* setting the image origin to center of mass of the image.
*
* Implementaton of this example and related components are based on:
* Viola, P. and Wells III, W. (1997).
* "Alignment by Maximization of Mutual Information"
* International Journal of Computer Vision, 24(2):137-154
*
*/
int itkImageRegistrationMethodTest_13(int, char* [] )
{
itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());
bool pass = true;
const unsigned int dimension = 3;
unsigned int j;
typedef float PixelType;
// Fixed Image Type
typedef itk::Image<PixelType,dimension> FixedImageType;
// Moving Image Type
typedef itk::Image<PixelType,dimension> MovingImageType;
// Transform Type
typedef itk::AffineTransform< double,dimension > TransformType;
// Optimizer Type
typedef itk::GradientDescentOptimizer OptimizerType;
// Metric Type
typedef itk::MutualInformationImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
// Interpolation technique
typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
// Registration Method
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
FixedImageType::Pointer fixedImage = FixedImageType::New();
MovingImageType::Pointer movingImage = MovingImageType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
/*********************************************************
* Set up the two input images.
* One image scaled and shifted with respect to the other.
**********************************************************/
double displacement[dimension] = {7,3,2};
double scale[dimension] = { 0.80, 1.0, 1.0 };
FixedImageType::SizeType size = {{100,100,40}};
FixedImageType::IndexType index = {{0,0,0}};
FixedImageType::RegionType region;
region.SetSize( size );
region.SetIndex( index );
fixedImage->SetLargestPossibleRegion( region );
fixedImage->SetBufferedRegion( region );
fixedImage->SetRequestedRegion( region );
fixedImage->Allocate();
movingImage->SetLargestPossibleRegion( region );
movingImage->SetBufferedRegion( region );
movingImage->SetRequestedRegion( region );
movingImage->Allocate();
typedef itk::ImageRegionIterator<MovingImageType> MovingImageIterator;
typedef itk::ImageRegionIterator<FixedImageType> FixedImageIterator;
itk::Point<double,dimension> center;
for ( j = 0; j < dimension; j++ )
{
center[j] = 0.5 * (double)region.GetSize()[j];
}
itk::Point<double,dimension> p;
itk::Vector<double,dimension> d;
MovingImageIterator mIter( movingImage, region );
FixedImageIterator fIter( fixedImage, region );
while( !mIter.IsAtEnd() )
{
for ( j = 0; j < dimension; j++ )
{
p[j] = mIter.GetIndex()[j];
}
d = p - center;
fIter.Set( (PixelType) F(d) );
for ( j = 0; j < dimension; j++ )
{
d[j] = d[j] * scale[j] + displacement[j];
}
mIter.Set( (PixelType) F(d) );
++fIter;
++mIter;
}
// set the image origin to be center of the image
double transCenter[dimension];
for ( j = 0; j < dimension; j++ )
{
transCenter[j] = -0.5 * double(size[j]);
}
movingImage->SetOrigin( transCenter );
fixedImage->SetOrigin( transCenter );
/******************************************************************
* Set up the optimizer.
******************************************************************/
// set the translation scale
typedef OptimizerType::ScalesType ScalesType;
ScalesType parametersScales( transform->GetNumberOfParameters() );
parametersScales.Fill( 1.0 );
for ( j = 9; j < 12; j++ )
{
parametersScales[j] = 0.0001;
}
optimizer->SetScales( parametersScales );
// need to maximize for mutual information
optimizer->MaximizeOn();
/******************************************************************
* Set up the optimizer observer
******************************************************************/
typedef itk::CommandIterationUpdate< OptimizerType > CommandIterationType;
CommandIterationType::Pointer iterationCommand =
CommandIterationType::New();
iterationCommand->SetOptimizer( optimizer );
/******************************************************************
* Set up the metric.
******************************************************************/
metric->SetMovingImageStandardDeviation( 5.0 );
metric->SetFixedImageStandardDeviation( 5.0 );
metric->SetNumberOfSpatialSamples( 50 );
metric->SetFixedImageRegion( fixedImage->GetBufferedRegion() );
/******************************************************************
* Set up the registrator.
******************************************************************/
// connect up the components
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetFixedImage( fixedImage );
registration->SetMovingImage( movingImage );
registration->SetInterpolator( interpolator );
// set initial parameters to identity
RegistrationType::ParametersType initialParameters(
transform->GetNumberOfParameters() );
initialParameters.Fill( 0.0 );
initialParameters[0] = 1.0;
initialParameters[4] = 1.0;
initialParameters[8] = 1.0;
/***********************************************************
* Run the registration - reducing learning rate as we go
************************************************************/
const unsigned int numberOfLoops = 3;
unsigned int iter[numberOfLoops] = { 300, 300, 350 };
double rates[numberOfLoops] = { 1e-3, 5e-4, 1e-4 };
for ( j = 0; j < numberOfLoops; j++ )
{
try
{
optimizer->SetNumberOfIterations( iter[j] );
optimizer->SetLearningRate( rates[j] );
registration->SetInitialTransformParameters( initialParameters );
registration->Update();
initialParameters = registration->GetLastTransformParameters();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Registration failed" << std::endl;
std::cout << "Reason " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
}
/***********************************************************
* Check the results
************************************************************/
RegistrationType::ParametersType solution =
registration->GetLastTransformParameters();
std::cout << "Solution is: " << solution << std::endl;
RegistrationType::ParametersType trueParameters(
transform->GetNumberOfParameters() );
trueParameters.Fill( 0.0 );
trueParameters[ 0] = 1/scale[0];
trueParameters[ 4] = 1/scale[1];
trueParameters[ 8] = 1/scale[2];
trueParameters[ 9] = - displacement[0]/scale[0];
trueParameters[10] = - displacement[1]/scale[1];
trueParameters[11] = - displacement[2]/scale[2];
std::cout << "True solution is: " << trueParameters << std::endl;
for( j = 0; j < 9; j++ )
{
if( vnl_math_abs( solution[j] - trueParameters[j] ) > 0.025 )
{
std::cout << "Failed " << j << std::endl;
pass = false;
}
}
for( j = 9; j < 12; j++ )
{
if( vnl_math_abs( solution[j] - trueParameters[j] ) > 1.0 )
{
std::cout << "Failed " << j << std::endl;
pass = false;
}
}
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
/*************************************************
* Check for parzen window exception
**************************************************/
double oldValue = metric->GetMovingImageStandardDeviation();
metric->SetMovingImageStandardDeviation( 0.005 );
try
{
pass = false;
registration->Update();
}
catch(itk::ExceptionObject& err)
{
std::cout << "Caught expected ExceptionObject" << std::endl;
std::cout << err << std::endl;
pass = true;
}
if( !pass )
{
std::cout << "Should have caught an exception" << std::endl;
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
metric->SetMovingImageStandardDeviation( oldValue );
/*************************************************
* Check for mapped out of image error
**************************************************/
solution[5] = 1000;
registration->SetInitialTransformParameters( solution );
try
{
pass = false;
registration->Update();
}
catch(itk::ExceptionObject& err)
{
std::cout << "Caught expected ExceptionObject" << std::endl;
std::cout << err << std::endl;
pass = true;
}
if( !pass )
{
std::cout << "Should have caught an exception" << std::endl;
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
namespace
{
/**
* This function defines the test image pattern.
* The pattern is a 3D gaussian in the middle
* and some directional pattern on the outside.
*/
double F( itk::Vector<double,3> & v )
{
double x = v[0];
double y = v[1];
double z = v[2];
const double s = 50;
double value = 200.0 * exp( - ( x*x + y*y + z*z )/(s*s) );
x -= 8; y += 3; z += 0;
double r = vcl_sqrt( x*x + y*y + z*z );
if( r > 35 )
{
value = 2 * ( vnl_math_abs( x ) +
0.8 * vnl_math_abs( y ) +
0.5 * vnl_math_abs( z ) );
}
if( r < 4 )
{
value = 400;
}
return value;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -