⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spsolve.c

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 C
📖 第 1 页 / 共 2 页
字号:
            }
        }
    }

/* Backward Substitution. Solves Ux = c.*/
    for (I = Size; I > 0; I--)
    {   Temp = Intermediate[I];
        pElement = Matrix->Diag[I]->NextInRow;

        while (pElement != NULL)
        {
/* Cmplx expr: Temp -= *Element * Intermediate[Element->Col]. */
            CMPLX_MULT_SUBT_ASSIGN(Temp, *pElement,Intermediate[pElement->Col]);
            pElement = pElement->NextInRow;
        }
        Intermediate[I] = Temp;
    }

/* Unscramble Intermediate vector while placing data in to Solution vector. */
    pExtOrder = &Matrix->IntToExtColMap[Size];

#if spSEPARATED_COMPLEX_VECTORS
    for (I = Size; I > 0; I--)
    {   Solution[*(pExtOrder)] = Intermediate[I].Real;
        iSolution[*(pExtOrder--)] = Intermediate[I].Imag;
    }
#else
    ExtVector = (ComplexVector)Solution;
    for (I = Size; I > 0; I--)
        ExtVector[*(pExtOrder--)] = Intermediate[I];
#endif

    return;
}
#endif /* spCOMPLEX */














#if TRANSPOSE
/*!
 *  Performs forward elimination and back substitution to find the
 *  unknown vector from the RHS vector and transposed factored
 *  matrix. This routine is useful when performing sensitivity analysis
 *  on a circuit using the adjoint method.  This routine assumes that
 *  the pivots are associated with the untransposed lower triangular
 *  matrix and that the diagonal of the untransposed upper
 *  triangular matrix consists of ones.
 *
 *  \param eMatrix
 *      Pointer to matrix.
 *  \param RHS
 *      \a RHS is the input data array, the right hand side. This data is
 *      undisturbed and may be reused for other solves.
 *  \param Solution
 *      \a Solution is the output data array. This routine is constructed
 *      such that \a RHS and \a Solution can be the same array.
 *  \param iRHS
 *      \a iRHS is the imaginary portion of the input data array, the right
 *      hand side. This data is undisturbed and may be reused for other solves.
 *      If \a spSEPARATED_COMPLEX_VECTOR is set false, or if matrix is real,
 *      there is no need to supply this array.
 *  \param iSolution
 *      \a iSolution is the imaginary portion of the output data array. This
 *      routine is constructed such that \a iRHS and \a iSolution can be
 *      the same array.  If \a spSEPARATED_COMPLEX_VECTOR is set false, or if
 *      matrix is real, there is no need to supply this array.
 */
/*  >>> Local variables:
 *  Intermediate  (RealVector)
 *      Temporary storage for use in forward elimination and backward
 *      substitution.  Commonly referred to as c, when the LU factorization
 *      equations are given as  Ax = b, Lc = b, Ux = c.  Local version of
 *      Matrix->Intermediate, which was created during the initial
 *      factorization in function spcCreateInternalVectors() in the matrix
 *      factorization module.
 *  pElement  (ElementPtr)
 *      Pointer used to address elements in both the lower and upper triangle
 *      matrices.
 *  pExtOrder  (int *)
 *      Pointer used to sequentially access each entry in IntToExtRowMap
 *      and IntToExtRowMap arrays.  Used to quickly scramble and unscramble
 *      RHS and Solution to account for row and column interchanges.
 *  pPivot  (ElementPtr)
 *      Pointer that points to current pivot or diagonal element.
 *  Size  (int)
 *      Size of matrix. Made local to reduce indirection.
 *  Temp  (RealNumber)
 *      Temporary storage for entries in arrays.
 */

/*VARARGS3*/

void
spSolveTransposed(
    spMatrix eMatrix,
    spREAL  RHS[],
    spREAL  Solution[]
#   if spCOMPLEX AND spSEPARATED_COMPLEX_VECTORS
        , spREAL iRHS[]
        , spREAL iSolution[]
#   endif
)
{
MatrixPtr  Matrix = (MatrixPtr)eMatrix;
register  ElementPtr  pElement;
register  RealVector  Intermediate;
register  int  I, *pExtOrder, Size;
ElementPtr  pPivot;
RealNumber  Temp;
void SolveComplexTransposedMatrix();

/* Begin `spSolveTransposed'. */
    ASSERT_IS_SPARSE( Matrix );
    ASSERT_NO_ERRORS( Matrix );
    ASSERT_IS_FACTORED( Matrix );

#if spCOMPLEX
    if (Matrix->Complex)
    {   SolveComplexTransposedMatrix( Matrix, RHS, Solution IMAG_VECTORS );
        return;
    }
#endif

#if REAL
    Size = Matrix->Size;
    Intermediate = Matrix->Intermediate;

/* Correct array pointers for ARRAY_OFFSET. */
#if NOT ARRAY_OFFSET
    --RHS;
    --Solution;
#endif

/* Initialize Intermediate vector. */
    pExtOrder = &Matrix->IntToExtColMap[Size];
    for (I = Size; I > 0; I--)
        Intermediate[I] = RHS[*(pExtOrder--)];

/* Forward elimination. */
    for (I = 1; I <= Size; I++)
    {   
/* This step of the elimination is skipped if Temp equals zero. */
        if ((Temp = Intermediate[I]) != 0.0)
        {   pElement = Matrix->Diag[I]->NextInRow;
            while (pElement != NULL)
            {   Intermediate[pElement->Col] -= Temp * pElement->Real;
                pElement = pElement->NextInRow;
            }

        }
    }

/* Backward Substitution. */
    for (I = Size; I > 0; I--)
    {   pPivot = Matrix->Diag[I];
        Temp = Intermediate[I];
        pElement = pPivot->NextInCol;
        while (pElement != NULL)
        {   Temp -= pElement->Real * Intermediate[pElement->Row];
            pElement = pElement->NextInCol;
        }
        Intermediate[I] = Temp * pPivot->Real;
    }

/* Unscramble Intermediate vector while placing data in to Solution vector. */
    pExtOrder = &Matrix->IntToExtRowMap[Size];
    for (I = Size; I > 0; I--)
        Solution[*(pExtOrder--)] = Intermediate[I];

    return;
#endif /* REAL */
}
#endif /* TRANSPOSE */










#if TRANSPOSE AND spCOMPLEX
/*!
 *  Performs forward elimination and back substitution to find the
 *  unknown vector from the RHS vector and transposed factored
 *  matrix. This routine is useful when performing sensitivity analysis
 *  on a circuit using the adjoint method.  This routine assumes that
 *  the pivots are associated with the untransposed lower triangular
 *  matrix and that the diagonal of the untransposed upper
 *  triangular matrix consists of ones.
 *
 *  \param Matrix
 *      Pointer to matrix.
 *  \param RHS
 *      \a RHS is the input data array, the right hand
 *      side. This data is undisturbed and may be reused for other solves.
 *      This vector is only the real portion if the matrix is complex and
 *      \a spSEPARATED_COMPLEX_VECTORS is set true.
 *  \param Solution
 *      \a Solution is the real portion of the output data array. This routine
 *      is constructed such that \a RHS and \a Solution can be the same array.
 *      This vector is only the real portion if the matrix is complex and
 *      \a spSEPARATED_COMPLEX_VECTORS is set true.
 *  \param iRHS
 *      \a iRHS is the imaginary portion of the input data array, the right
 *      hand side. This data is undisturbed and may be reused for other solves.
 *      If either \a spCOMPLEX or \a spSEPARATED_COMPLEX_VECTOR is set false,
 *      there is no need to supply this array.
 *  \param iSolution
 *      \a iSolution is the imaginary portion of the output data array. This
 *      routine is constructed such that \a iRHS and \a iSolution can be
 *      the same array.  If \a spCOMPLEX or \a spSEPARATED_COMPLEX_VECTOR is set
 *      false, there is no need to supply this array.
 */
/*  >>> Local variables:
 *  Intermediate  (ComplexVector)
 *      Temporary storage for use in forward elimination and backward
 *      substitution.  Commonly referred to as c, when the LU factorization
 *      equations are given as  Ax = b, Lc = b, Ux = c.  Local version of
 *      Matrix->Intermediate, which was created during
 *      the initial factorization in function spcCreateInternalVectors() in the
 *      matrix factorization module.
 *  pElement  (ElementPtr)
 *      Pointer used to address elements in both the lower and upper triangle
 *      matrices.
 *  pExtOrder  (int *)
 *      Pointer used to sequentially access each entry in IntToExtRowMap
 *      and IntToExtColMap arrays.  Used to quickly scramble and unscramble
 *      RHS and Solution to account for row and column interchanges.
 *  pPivot  (ElementPtr)
 *      Pointer that points to current pivot or diagonal element.
 *  Size  (int)
 *      Size of matrix. Made local to reduce indirection.
 *  Temp  (ComplexNumber)
 *      Temporary storage for entries in arrays.
 */

static void
SolveComplexTransposedMatrix(
    MatrixPtr  Matrix,
    RealVector  RHS,
    RealVector  Solution
#   if spSEPARATED_COMPLEX_VECTORS
        , RealVector iRHS
        , RealVector iSolution
#   endif
)
{
register  ElementPtr  pElement;
register  ComplexVector  Intermediate;
register  int  I, *pExtOrder, Size;
register  ComplexVector  ExtVector;
ElementPtr  pPivot;
ComplexNumber  Temp;

/* Begin `SolveComplexTransposedMatrix'. */

    Size = Matrix->Size;
    Intermediate = (ComplexVector)Matrix->Intermediate;

/* Correct array pointers for ARRAY_OFFSET. */
#if NOT ARRAY_OFFSET
#if spSEPARATED_COMPLEX_VECTORS
    --RHS;      --iRHS;
    --Solution; --iSolution;
#else
    RHS -= 2;   Solution -= 2;
#endif
#endif

/* Initialize Intermediate vector. */
    pExtOrder = &Matrix->IntToExtColMap[Size];

#if spSEPARATED_COMPLEX_VECTORS
    for (I = Size; I > 0; I--)
    {   Intermediate[I].Real = RHS[*(pExtOrder)];
        Intermediate[I].Imag = iRHS[*(pExtOrder--)];
    }
#else
    ExtVector = (ComplexVector)RHS;
    for (I = Size; I > 0; I--)
        Intermediate[I] = ExtVector[*(pExtOrder--)];
#endif

/* Forward elimination. */
    for (I = 1; I <= Size; I++)
    {   Temp = Intermediate[I];

/* This step of the elimination is skipped if Temp equals zero. */
        if ((Temp.Real != 0.0) OR (Temp.Imag != 0.0))
        {   pElement = Matrix->Diag[I]->NextInRow;
            while (pElement != NULL)
            {
/* Cmplx expr: Intermediate[Element->Col] -= Temp * *Element. */
                CMPLX_MULT_SUBT_ASSIGN( Intermediate[pElement->Col],
                                        Temp, *pElement);
                pElement = pElement->NextInRow;
            }
        }
    }

/* Backward Substitution. */
    for (I = Size; I > 0; I--)
    {   pPivot = Matrix->Diag[I];
        Temp = Intermediate[I];
        pElement = pPivot->NextInCol;

        while (pElement != NULL)
        {
/* Cmplx expr: Temp -= Intermediate[Element->Row] * *Element. */
            CMPLX_MULT_SUBT_ASSIGN(Temp,Intermediate[pElement->Row],*pElement);

            pElement = pElement->NextInCol;
        }
/* Cmplx expr: Intermediate = Temp * (1.0 / *pPivot). */
        CMPLX_MULT(Intermediate[I], Temp, *pPivot);
    }

/* Unscramble Intermediate vector while placing data in to Solution vector. */
    pExtOrder = &Matrix->IntToExtRowMap[Size];

#if spSEPARATED_COMPLEX_VECTORS
    for (I = Size; I > 0; I--)
    {   Solution[*(pExtOrder)] = Intermediate[I].Real;
        iSolution[*(pExtOrder--)] = Intermediate[I].Imag;
    }
#else
    ExtVector = (ComplexVector)Solution;
    for (I = Size; I > 0; I--)
        ExtVector[*(pExtOrder--)] = Intermediate[I];
#endif

    return;
}
#endif /* TRANSPOSE AND spCOMPLEX */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -