📄 zqrdc.c
字号:
/* linpack/zqrdc.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static doublecomplex c_b28 = {1.,0.};
/*< subroutine zqrdc(x,ldx,n,p,qraux,jpvt,work,job) >*/
/* Subroutine */ int zqrdc_(doublecomplex *x, integer *ldx, integer *n,
integer *p, doublecomplex *qraux, integer *jpvt, doublecomplex *work,
integer *job)
{
/* System generated locals */
integer x_dim1, x_offset, i__1, i__2, i__3, i__4;
doublereal d__1, d__2, d__3, d__4;
doublecomplex z__1, z__2, z__3;
/* Builtin functions */
double z_abs(doublecomplex *);
void z_div(doublecomplex *, doublecomplex *, doublecomplex *), z_sqrt(
doublecomplex *, doublecomplex *);
/* Local variables */
integer j, l;
doublecomplex t;
integer jj, jp, pl, pu;
doublereal tt;
integer lp1, lup;
logical negj;
integer maxj;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *);
logical swapj;
doublecomplex nrmxl;
extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *);
extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
doublereal maxnrm;
/*< integer ldx,n,p,job >*/
/*< integer jpvt(1) >*/
/*< complex*16 x(ldx,1),qraux(1),work(1) >*/
/* zqrdc uses householder transformations to compute the qr */
/* factorization of an n by p matrix x. column pivoting */
/* based on the 2-norms of the reduced columns may be */
/* performed at the users option. */
/* on entry */
/* x complex*16(ldx,p), where ldx .ge. n. */
/* x contains the matrix whose decomposition is to be */
/* computed. */
/* ldx integer. */
/* ldx is the leading dimension of the array x. */
/* n integer. */
/* n is the number of rows of the matrix x. */
/* p integer. */
/* p is the number of columns of the matrix x. */
/* jpvt integer(p). */
/* jpvt contains integers that control the selection */
/* of the pivot columns. the k-th column x(k) of x */
/* is placed in one of three classes according to the */
/* value of jpvt(k). */
/* if jpvt(k) .gt. 0, then x(k) is an initial */
/* column. */
/* if jpvt(k) .eq. 0, then x(k) is a free column. */
/* if jpvt(k) .lt. 0, then x(k) is a final column. */
/* before the decomposition is computed, initial columns */
/* are moved to the beginning of the array x and final */
/* columns to the end. both initial and final columns */
/* are frozen in place during the computation and only */
/* free columns are moved. at the k-th stage of the */
/* reduction, if x(k) is occupied by a free column */
/* it is interchanged with the free column of largest */
/* reduced norm. jpvt is not referenced if */
/* job .eq. 0. */
/* work complex*16(p). */
/* work is a work array. work is not referenced if */
/* job .eq. 0. */
/* job integer. */
/* job is an integer that initiates column pivoting. */
/* if job .eq. 0, no pivoting is done. */
/* if job .ne. 0, pivoting is done. */
/* on return */
/* x x contains in its upper triangle the upper */
/* triangular matrix r of the qr factorization. */
/* below its diagonal x contains information from */
/* which the unitary part of the decomposition */
/* can be recovered. note that if pivoting has */
/* been requested, the decomposition is not that */
/* of the original matrix x but that of x */
/* with its columns permuted as described by jpvt. */
/* qraux complex*16(p). */
/* qraux contains further information required to recover */
/* the unitary part of the decomposition. */
/* jpvt jpvt(k) contains the index of the column of the */
/* original matrix that has been interchanged into */
/* the k-th column, if pivoting was requested. */
/* linpack. this version dated 08/14/78 . */
/* g.w. stewart, university of maryland, argonne national lab. */
/* zqrdc uses the following functions and subprograms. */
/* blas zaxpy,zdotc,zscal,zswap,dznrm2 */
/* fortran dabs,dmax1,cdabs,dcmplx,cdsqrt,min0 */
/* internal variables */
/*< integer j,jp,l,lp1,lup,maxj,pl,pu >*/
/*< double precision maxnrm,dznrm2,tt >*/
/*< complex*16 zdotc,nrmxl,t >*/
/*< logical negj,swapj >*/
/*< complex*16 csign,zdum,zdum1,zdum2 >*/
/*< double precision cabs1 >*/
/*< double precision dreal,dimag >*/
/*< complex*16 zdumr,zdumi >*/
/*< dreal(zdumr) = zdumr >*/
/*< dimag(zdumi) = (0.0d0,-1.0d0)*zdumi >*/
/*< csign(zdum1,zdum2) = cdabs(zdum1)*(zdum2/cdabs(zdum2)) >*/
/*< cabs1(zdum) = dabs(dreal(zdum)) + dabs(dimag(zdum)) >*/
/*< pl = 1 >*/
/* Parameter adjustments */
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--qraux;
--jpvt;
--work;
/* Function Body */
pl = 1;
/*< pu = 0 >*/
pu = 0;
/*< if (job .eq. 0) go to 60 >*/
if (*job == 0) {
goto L60;
}
/* pivoting has been requested. rearrange the columns */
/* according to jpvt. */
/*< do 20 j = 1, p >*/
i__1 = *p;
for (j = 1; j <= i__1; ++j) {
/*< swapj = jpvt(j) .gt. 0 >*/
swapj = jpvt[j] > 0;
/*< negj = jpvt(j) .lt. 0 >*/
negj = jpvt[j] < 0;
/*< jpvt(j) = j >*/
jpvt[j] = j;
/*< if (negj) jpvt(j) = -j >*/
if (negj) {
jpvt[j] = -j;
}
/*< if (.not.swapj) go to 10 >*/
if (! swapj) {
goto L10;
}
/*< if (j .ne. pl) call zswap(n,x(1,pl),1,x(1,j),1) >*/
if (j != pl) {
zswap_(n, &x[pl * x_dim1 + 1], &c__1, &x[j * x_dim1 + 1], &c__1);
}
/*< jpvt(j) = jpvt(pl) >*/
jpvt[j] = jpvt[pl];
/*< jpvt(pl) = j >*/
jpvt[pl] = j;
/*< pl = pl + 1 >*/
++pl;
/*< 10 continue >*/
L10:
/*< 20 continue >*/
/* L20: */
;
}
/*< pu = p >*/
pu = *p;
/*< do 50 jj = 1, p >*/
i__1 = *p;
for (jj = 1; jj <= i__1; ++jj) {
/*< j = p - jj + 1 >*/
j = *p - jj + 1;
/*< if (jpvt(j) .ge. 0) go to 40 >*/
if (jpvt[j] >= 0) {
goto L40;
}
/*< jpvt(j) = -jpvt(j) >*/
jpvt[j] = -jpvt[j];
/*< if (j .eq. pu) go to 30 >*/
if (j == pu) {
goto L30;
}
/*< call zswap(n,x(1,pu),1,x(1,j),1) >*/
zswap_(n, &x[pu * x_dim1 + 1], &c__1, &x[j * x_dim1 + 1], &c__1);
/*< jp = jpvt(pu) >*/
jp = jpvt[pu];
/*< jpvt(pu) = jpvt(j) >*/
jpvt[pu] = jpvt[j];
/*< jpvt(j) = jp >*/
jpvt[j] = jp;
/*< 30 continue >*/
L30:
/*< pu = pu - 1 >*/
--pu;
/*< 40 continue >*/
L40:
/*< 50 continue >*/
/* L50: */
;
}
/*< 60 continue >*/
L60:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -