📄 dtrmm.c
字号:
/* blas/dtrmm.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< >*/
/* Subroutine */ int dtrmm_(char *side, char *uplo, char *transa, char *diag,
integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
lda, doublereal *b, integer *ldb, ftnlen side_len, ftnlen uplo_len,
ftnlen transa_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, j, k, info;
doublereal temp;
logical lside;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer nrowa;
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical nounit;
(void)side_len;
(void)uplo_len;
(void)transa_len;
(void)diag_len;
/* .. Scalar Arguments .. */
/*< CHARACTER*1 SIDE, UPLO, TRANSA, DIAG >*/
/*< INTEGER M, N, LDA, LDB >*/
/*< DOUBLE PRECISION ALPHA >*/
/* .. Array Arguments .. */
/*< DOUBLE PRECISION A( LDA, * ), B( LDB, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DTRMM performs one of the matrix-matrix operations */
/* B := alpha*op( A )*B, or B := alpha*B*op( A ), */
/* where alpha is a scalar, B is an m by n matrix, A is a unit, or */
/* non-unit, upper or lower triangular matrix and op( A ) is one of */
/* op( A ) = A or op( A ) = A'. */
/* Parameters */
/* ========== */
/* SIDE - CHARACTER*1. */
/* On entry, SIDE specifies whether op( A ) multiplies B from */
/* the left or right as follows: */
/* SIDE = 'L' or 'l' B := alpha*op( A )*B. */
/* SIDE = 'R' or 'r' B := alpha*B*op( A ). */
/* Unchanged on exit. */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the matrix A is an upper or */
/* lower triangular matrix as follows: */
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* Unchanged on exit. */
/* TRANSA - CHARACTER*1. */
/* On entry, TRANSA specifies the form of op( A ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSA = 'N' or 'n' op( A ) = A. */
/* TRANSA = 'T' or 't' op( A ) = A'. */
/* TRANSA = 'C' or 'c' op( A ) = A'. */
/* Unchanged on exit. */
/* DIAG - CHARACTER*1. */
/* On entry, DIAG specifies whether or not A is unit triangular */
/* as follows: */
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* DIAG = 'N' or 'n' A is not assumed to be unit */
/* triangular. */
/* Unchanged on exit. */
/* M - INTEGER. */
/* On entry, M specifies the number of rows of B. M must be at */
/* least zero. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the number of columns of B. N must be */
/* at least zero. */
/* Unchanged on exit. */
/* ALPHA - DOUBLE PRECISION. */
/* On entry, ALPHA specifies the scalar alpha. When alpha is */
/* zero then A is not referenced and B need not be set before */
/* entry. */
/* Unchanged on exit. */
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m */
/* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */
/* Before entry with UPLO = 'U' or 'u', the leading k by k */
/* upper triangular part of the array A must contain the upper */
/* triangular matrix and the strictly lower triangular part of */
/* A is not referenced. */
/* Before entry with UPLO = 'L' or 'l', the leading k by k */
/* lower triangular part of the array A must contain the lower */
/* triangular matrix and the strictly upper triangular part of */
/* A is not referenced. */
/* Note that when DIAG = 'U' or 'u', the diagonal elements of */
/* A are not referenced either, but are assumed to be unity. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. When SIDE = 'L' or 'l' then */
/* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */
/* then LDA must be at least max( 1, n ). */
/* Unchanged on exit. */
/* B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */
/* Before entry, the leading m by n part of the array B must */
/* contain the matrix B, and on exit is overwritten by the */
/* transformed matrix. */
/* LDB - INTEGER. */
/* On entry, LDB specifies the first dimension of B as declared */
/* in the calling (sub) program. LDB must be at least */
/* max( 1, m ). */
/* Unchanged on exit. */
/* Level 3 Blas routine. */
/* -- Written on 8-February-1989. */
/* Jack Dongarra, Argonne National Laboratory. */
/* Iain Duff, AERE Harwell. */
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* Sven Hammarling, Numerical Algorithms Group Ltd. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA >*/
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX >*/
/* .. Local Scalars .. */
/*< LOGICAL LSIDE, NOUNIT, UPPER >*/
/*< INTEGER I, INFO, J, K, NROWA >*/
/*< DOUBLE PRECISION TEMP >*/
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE , ZERO >*/
/*< PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/*< LSIDE = LSAME( SIDE , 'L' ) >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
lside = lsame_(side, "L", (ftnlen)1, (ftnlen)1);
/*< IF( LSIDE )THEN >*/
if (lside) {
/*< NROWA = M >*/
nrowa = *m;
/*< ELSE >*/
} else {
/*< NROWA = N >*/
nrowa = *n;
/*< END IF >*/
}
/*< NOUNIT = LSAME( DIAG , 'N' ) >*/
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
/*< UPPER = LSAME( UPLO , 'U' ) >*/
upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1);
/*< INFO = 0 >*/
info = 0;
/*< >*/
if (! lside && ! lsame_(side, "R", (ftnlen)1, (ftnlen)1)) {
/*< INFO = 1 >*/
info = 1;
/*< >*/
} else if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
/*< INFO = 2 >*/
info = 2;
/*< >*/
} else if (! lsame_(transa, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(transa,
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(transa, "C", (ftnlen)1, (
ftnlen)1)) {
/*< INFO = 3 >*/
info = 3;
/*< >*/
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
"N", (ftnlen)1, (ftnlen)1)) {
/*< INFO = 4 >*/
info = 4;
/*< ELSE IF( M .LT.0 )THEN >*/
} else if (*m < 0) {
/*< INFO = 5 >*/
info = 5;
/*< ELSE IF( N .LT.0 )THEN >*/
} else if (*n < 0) {
/*< INFO = 6 >*/
info = 6;
/*< ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN >*/
} else if (*lda < max(1,nrowa)) {
/*< INFO = 9 >*/
info = 9;
/*< ELSE IF( LDB.LT.MAX( 1, M ) )THEN >*/
} else if (*ldb < max(1,*m)) {
/*< INFO = 11 >*/
info = 11;
/*< END IF >*/
}
/*< IF( INFO.NE.0 )THEN >*/
if (info != 0) {
/*< CALL XERBLA( 'DTRMM ', INFO ) >*/
xerbla_("DTRMM ", &info, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible. */
/*< >*/
if (*n == 0) {
return 0;
}
/* And when alpha.eq.zero. */
/*< IF( ALPHA.EQ.ZERO )THEN >*/
if (*alpha == 0.) {
/*< DO 20, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 10, I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< B( I, J ) = ZERO >*/
b[i__ + j * b_dim1] = 0.;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Start the operations. */
/*< IF( LSIDE )THEN >*/
if (lside) {
/*< IF( LSAME( TRANSA, 'N' ) )THEN >*/
if (lsame_(transa, "N", (ftnlen)1, (ftnlen)1)) {
/* Form B := alpha*A*B. */
/*< IF( UPPER )THEN >*/
if (upper) {
/*< DO 50, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 40, K = 1, M >*/
i__2 = *m;
for (k = 1; k <= i__2; ++k) {
/*< IF( B( K, J ).NE.ZERO )THEN >*/
if (b[k + j * b_dim1] != 0.) {
/*< TEMP = ALPHA*B( K, J ) >*/
temp = *alpha * b[k + j * b_dim1];
/*< DO 30, I = 1, K - 1 >*/
i__3 = k - 1;
for (i__ = 1; i__ <= i__3; ++i__) {
/*< B( I, J ) = B( I, J ) + TEMP*A( I, K ) >*/
b[i__ + j * b_dim1] += temp * a[i__ + k *
a_dim1];
/*< 30 CONTINUE >*/
/* L30: */
}
/*< >*/
if (nounit) {
temp *= a[k + k * a_dim1];
}
/*< B( K, J ) = TEMP >*/
b[k + j * b_dim1] = temp;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -