📄 ztrsv.c
字号:
/* blas/ztrsv.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE ZTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) >*/
/* Subroutine */ int ztrsv_(char *uplo, char *trans, char *diag, integer *n,
doublecomplex *a, integer *lda, doublecomplex *x, integer *incx,
ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
doublecomplex z__1, z__2, z__3;
/* Builtin functions */
void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, ix, jx, kx=0, info;
doublecomplex temp;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical noconj, nounit;
(void)uplo_len;
(void)trans_len;
(void)diag_len;
/* .. Scalar Arguments .. */
/*< INTEGER INCX, LDA, N >*/
/*< CHARACTER*1 DIAG, TRANS, UPLO >*/
/* .. Array Arguments .. */
/*< COMPLEX*16 A( LDA, * ), X( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZTRSV solves one of the systems of equations */
/* A*x = b, or A'*x = b, or conjg( A' )*x = b, */
/* where b and x are n element vectors and A is an n by n unit, or */
/* non-unit, upper or lower triangular matrix. */
/* No test for singularity or near-singularity is included in this */
/* routine. Such tests must be performed before calling this routine. */
/* Parameters */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the matrix is an upper or */
/* lower triangular matrix as follows: */
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* Unchanged on exit. */
/* TRANS - CHARACTER*1. */
/* On entry, TRANS specifies the equations to be solved as */
/* follows: */
/* TRANS = 'N' or 'n' A*x = b. */
/* TRANS = 'T' or 't' A'*x = b. */
/* TRANS = 'C' or 'c' conjg( A' )*x = b. */
/* Unchanged on exit. */
/* DIAG - CHARACTER*1. */
/* On entry, DIAG specifies whether or not A is unit */
/* triangular as follows: */
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* DIAG = 'N' or 'n' A is not assumed to be unit */
/* triangular. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading n by n */
/* upper triangular part of the array A must contain the upper */
/* triangular matrix and the strictly lower triangular part of */
/* A is not referenced. */
/* Before entry with UPLO = 'L' or 'l', the leading n by n */
/* lower triangular part of the array A must contain the lower */
/* triangular matrix and the strictly upper triangular part of */
/* A is not referenced. */
/* Note that when DIAG = 'U' or 'u', the diagonal elements of */
/* A are not referenced either, but are assumed to be unity. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* max( 1, n ). */
/* Unchanged on exit. */
/* X - COMPLEX*16 array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element right-hand side vector b. On exit, X is overwritten */
/* with the solution vector x. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* .. Parameters .. */
/*< COMPLEX*16 ZERO >*/
/*< PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) >*/
/* .. Local Scalars .. */
/*< COMPLEX*16 TEMP >*/
/*< INTEGER I, INFO, IX, J, JX, KX >*/
/*< LOGICAL NOCONJ, NOUNIT >*/
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA >*/
/* .. Intrinsic Functions .. */
/*< INTRINSIC DCONJG, MAX >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
/* Function Body */
info = 0;
/*< >*/
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
/*< INFO = 1 >*/
info = 1;
/*< >*/
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
ftnlen)1)) {
/*< INFO = 2 >*/
info = 2;
/*< >*/
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
"N", (ftnlen)1, (ftnlen)1)) {
/*< INFO = 3 >*/
info = 3;
/*< ELSE IF( N.LT.0 )THEN >*/
} else if (*n < 0) {
/*< INFO = 4 >*/
info = 4;
/*< ELSE IF( LDA.LT.MAX( 1, N ) )THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = 6 >*/
info = 6;
/*< ELSE IF( INCX.EQ.0 )THEN >*/
} else if (*incx == 0) {
/*< INFO = 8 >*/
info = 8;
/*< END IF >*/
}
/*< IF( INFO.NE.0 )THEN >*/
if (info != 0) {
/*< CALL XERBLA( 'ZTRSV ', INFO ) >*/
xerbla_("ZTRSV ", &info, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible. */
/*< >*/
if (*n == 0) {
return 0;
}
/*< NOCONJ = LSAME( TRANS, 'T' ) >*/
noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
/*< NOUNIT = LSAME( DIAG , 'N' ) >*/
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
/* Set up the start point in X if the increment is not unity. This */
/* will be ( N - 1 )*INCX too small for descending loops. */
/*< IF( INCX.LE.0 )THEN >*/
if (*incx <= 0) {
/*< KX = 1 - ( N - 1 )*INCX >*/
kx = 1 - (*n - 1) * *incx;
/*< ELSE IF( INCX.NE.1 )THEN >*/
} else if (*incx != 1) {
/*< KX = 1 >*/
kx = 1;
/*< END IF >*/
}
/* Start the operations. In this version the elements of A are */
/* accessed sequentially with one pass through A. */
/*< IF( LSAME( TRANS, 'N' ) )THEN >*/
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
/* Form x := inv( A )*x. */
/*< IF( LSAME( UPLO, 'U' ) )THEN >*/
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/*< IF( INCX.EQ.1 )THEN >*/
if (*incx == 1) {
/*< DO 20, J = N, 1, -1 >*/
for (j = *n; j >= 1; --j) {
/*< IF( X( J ).NE.ZERO )THEN >*/
i__1 = j;
if (x[i__1].r != 0. || x[i__1].i != 0.) {
/*< >*/
if (nounit) {
i__1 = j;
z_div(&z__1, &x[j], &a[j + j * a_dim1]);
x[i__1].r = z__1.r, x[i__1].i = z__1.i;
}
/*< TEMP = X( J ) >*/
i__1 = j;
temp.r = x[i__1].r, temp.i = x[i__1].i;
/*< DO 10, I = J - 1, 1, -1 >*/
for (i__ = j - 1; i__ >= 1; --i__) {
/*< X( I ) = X( I ) - TEMP*A( I, J ) >*/
i__1 = i__;
i__2 = i__;
i__3 = i__ + j * a_dim1;
z__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
z__2.i = temp.r * a[i__3].i + temp.i * a[
i__3].r;
z__1.r = x[i__2].r - z__2.r, z__1.i = x[i__2].i -
z__2.i;
x[i__1].r = z__1.r, x[i__1].i = z__1.i;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< END IF >*/
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< ELSE >*/
} else {
/*< JX = KX + ( N - 1 )*INCX >*/
jx = kx + (*n - 1) * *incx;
/*< DO 40, J = N, 1, -1 >*/
for (j = *n; j >= 1; --j) {
/*< IF( X( JX ).NE.ZERO )THEN >*/
i__1 = jx;
if (x[i__1].r != 0. || x[i__1].i != 0.) {
/*< >*/
if (nounit) {
i__1 = jx;
z_div(&z__1, &x[jx], &a[j + j * a_dim1]);
x[i__1].r = z__1.r, x[i__1].i = z__1.i;
}
/*< TEMP = X( JX ) >*/
i__1 = jx;
temp.r = x[i__1].r, temp.i = x[i__1].i;
/*< IX = JX >*/
ix = jx;
/*< DO 30, I = J - 1, 1, -1 >*/
for (i__ = j - 1; i__ >= 1; --i__) {
/*< IX = IX - INCX >*/
ix -= *incx;
/*< X( IX ) = X( IX ) - TEMP*A( I, J ) >*/
i__1 = ix;
i__2 = ix;
i__3 = i__ + j * a_dim1;
z__2.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
z__2.i = temp.r * a[i__3].i + temp.i * a[
i__3].r;
z__1.r = x[i__2].r - z__2.r, z__1.i = x[i__2].i -
z__2.i;
x[i__1].r = z__1.r, x[i__1].i = z__1.i;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< END IF >*/
}
/*< JX = JX - INCX >*/
jx -= *incx;
/*< 40 CONTINUE >*/
/* L40: */
}
/*< END IF >*/
}
/*< ELSE >*/
} else {
/*< IF( INCX.EQ.1 )THEN >*/
if (*incx == 1) {
/*< DO 60, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< IF( X( J ).NE.ZERO )THEN >*/
i__2 = j;
if (x[i__2].r != 0. || x[i__2].i != 0.) {
/*< >*/
if (nounit) {
i__2 = j;
z_div(&z__1, &x[j], &a[j + j * a_dim1]);
x[i__2].r = z__1.r, x[i__2].i = z__1.i;
}
/*< TEMP = X( J ) >*/
i__2 = j;
temp.r = x[i__2].r, temp.i = x[i__2].i;
/*< DO 50, I = J + 1, N >*/
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
/*< X( I ) = X( I ) - TEMP*A( I, J ) >*/
i__3 = i__;
i__4 = i__;
i__5 = i__ + j * a_dim1;
z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
z__2.i = temp.r * a[i__5].i + temp.i * a[
i__5].r;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -