📄 zgemm.c
字号:
/* blas/zgemm.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< >*/
/* Subroutine */ int zgemm_(char *transa, char *transb, integer *m, integer *
n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda,
doublecomplex *b, integer *ldb, doublecomplex *beta, doublecomplex *
c__, integer *ldc, ftnlen transa_len, ftnlen transb_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3, i__4, i__5, i__6;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, l, info;
logical nota, notb;
doublecomplex temp;
logical conja, conjb;
integer ncola;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer nrowa, nrowb;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
(void)transa_len;
(void)transb_len;
/* .. Scalar Arguments .. */
/*< CHARACTER*1 TRANSA, TRANSB >*/
/*< INTEGER M, N, K, LDA, LDB, LDC >*/
/*< COMPLEX*16 ALPHA, BETA >*/
/* .. Array Arguments .. */
/*< COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZGEMM performs one of the matrix-matrix operations */
/* C := alpha*op( A )*op( B ) + beta*C, */
/* where op( X ) is one of */
/* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), */
/* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
/* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
/* Parameters */
/* ========== */
/* TRANSA - CHARACTER*1. */
/* On entry, TRANSA specifies the form of op( A ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSA = 'N' or 'n', op( A ) = A. */
/* TRANSA = 'T' or 't', op( A ) = A'. */
/* TRANSA = 'C' or 'c', op( A ) = conjg( A' ). */
/* Unchanged on exit. */
/* TRANSB - CHARACTER*1. */
/* On entry, TRANSB specifies the form of op( B ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSB = 'N' or 'n', op( B ) = B. */
/* TRANSB = 'T' or 't', op( B ) = B'. */
/* TRANSB = 'C' or 'c', op( B ) = conjg( B' ). */
/* Unchanged on exit. */
/* M - INTEGER. */
/* On entry, M specifies the number of rows of the matrix */
/* op( A ) and of the matrix C. M must be at least zero. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the number of columns of the matrix */
/* op( B ) and the number of columns of the matrix C. N must be */
/* at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry, K specifies the number of columns of the matrix */
/* op( A ) and the number of rows of the matrix op( B ). K must */
/* be at least zero. */
/* Unchanged on exit. */
/* ALPHA - COMPLEX*16 . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is */
/* k when TRANSA = 'N' or 'n', and is m otherwise. */
/* Before entry with TRANSA = 'N' or 'n', the leading m by k */
/* part of the array A must contain the matrix A, otherwise */
/* the leading k by m part of the array A must contain the */
/* matrix A. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. When TRANSA = 'N' or 'n' then */
/* LDA must be at least max( 1, m ), otherwise LDA must be at */
/* least max( 1, k ). */
/* Unchanged on exit. */
/* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is */
/* n when TRANSB = 'N' or 'n', and is k otherwise. */
/* Before entry with TRANSB = 'N' or 'n', the leading k by n */
/* part of the array B must contain the matrix B, otherwise */
/* the leading n by k part of the array B must contain the */
/* matrix B. */
/* Unchanged on exit. */
/* LDB - INTEGER. */
/* On entry, LDB specifies the first dimension of B as declared */
/* in the calling (sub) program. When TRANSB = 'N' or 'n' then */
/* LDB must be at least max( 1, k ), otherwise LDB must be at */
/* least max( 1, n ). */
/* Unchanged on exit. */
/* BETA - COMPLEX*16 . */
/* On entry, BETA specifies the scalar beta. When BETA is */
/* supplied as zero then C need not be set on input. */
/* Unchanged on exit. */
/* C - COMPLEX*16 array of DIMENSION ( LDC, n ). */
/* Before entry, the leading m by n part of the array C must */
/* contain the matrix C, except when beta is zero, in which */
/* case C need not be set on entry. */
/* On exit, the array C is overwritten by the m by n matrix */
/* ( alpha*op( A )*op( B ) + beta*C ). */
/* LDC - INTEGER. */
/* On entry, LDC specifies the first dimension of C as declared */
/* in the calling (sub) program. LDC must be at least */
/* max( 1, m ). */
/* Unchanged on exit. */
/* Level 3 Blas routine. */
/* -- Written on 8-February-1989. */
/* Jack Dongarra, Argonne National Laboratory. */
/* Iain Duff, AERE Harwell. */
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* Sven Hammarling, Numerical Algorithms Group Ltd. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA >*/
/* .. Intrinsic Functions .. */
/*< INTRINSIC DCONJG, MAX >*/
/* .. Local Scalars .. */
/*< LOGICAL CONJA, CONJB, NOTA, NOTB >*/
/*< INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB >*/
/*< COMPLEX*16 TEMP >*/
/* .. Parameters .. */
/*< COMPLEX*16 ONE >*/
/*< PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) >*/
/*< COMPLEX*16 ZERO >*/
/*< PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) >*/
/* .. */
/* .. Executable Statements .. */
/* Set NOTA and NOTB as true if A and B respectively are not */
/* conjugated or transposed, set CONJA and CONJB as true if A and */
/* B respectively are to be transposed but not conjugated and set */
/* NROWA, NCOLA and NROWB as the number of rows and columns of A */
/* and the number of rows of B respectively. */
/*< NOTA = LSAME( TRANSA, 'N' ) >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
/* Function Body */
nota = lsame_(transa, "N", (ftnlen)1, (ftnlen)1);
/*< NOTB = LSAME( TRANSB, 'N' ) >*/
notb = lsame_(transb, "N", (ftnlen)1, (ftnlen)1);
/*< CONJA = LSAME( TRANSA, 'C' ) >*/
conja = lsame_(transa, "C", (ftnlen)1, (ftnlen)1);
/*< CONJB = LSAME( TRANSB, 'C' ) >*/
conjb = lsame_(transb, "C", (ftnlen)1, (ftnlen)1);
/*< IF( NOTA )THEN >*/
if (nota) {
/*< NROWA = M >*/
nrowa = *m;
/*< NCOLA = K >*/
ncola = *k;
/*< ELSE >*/
} else {
/*< NROWA = K >*/
nrowa = *k;
/*< NCOLA = M >*/
ncola = *m;
/*< END IF >*/
}
/*< IF( NOTB )THEN >*/
if (notb) {
/*< NROWB = K >*/
nrowb = *k;
/*< ELSE >*/
} else {
/*< NROWB = N >*/
nrowb = *n;
/*< END IF >*/
}
/* Test the input parameters. */
/*< INFO = 0 >*/
info = 0;
/*< >*/
if (! nota && ! conja && ! lsame_(transa, "T", (ftnlen)1, (ftnlen)1)) {
/*< INFO = 1 >*/
info = 1;
/*< >*/
} else if (! notb && ! conjb && ! lsame_(transb, "T", (ftnlen)1, (ftnlen)
1)) {
/*< INFO = 2 >*/
info = 2;
/*< ELSE IF( M .LT.0 )THEN >*/
} else if (*m < 0) {
/*< INFO = 3 >*/
info = 3;
/*< ELSE IF( N .LT.0 )THEN >*/
} else if (*n < 0) {
/*< INFO = 4 >*/
info = 4;
/*< ELSE IF( K .LT.0 )THEN >*/
} else if (*k < 0) {
/*< INFO = 5 >*/
info = 5;
/*< ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN >*/
} else if (*lda < max(1,nrowa)) {
/*< INFO = 8 >*/
info = 8;
/*< ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN >*/
} else if (*ldb < max(1,nrowb)) {
/*< INFO = 10 >*/
info = 10;
/*< ELSE IF( LDC.LT.MAX( 1, M ) )THEN >*/
} else if (*ldc < max(1,*m)) {
/*< INFO = 13 >*/
info = 13;
/*< END IF >*/
}
/*< IF( INFO.NE.0 )THEN >*/
if (info != 0) {
/*< CALL XERBLA( 'ZGEMM ', INFO ) >*/
xerbla_("ZGEMM ", &info, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible. */
/*< >*/
if (*m == 0 || *n == 0 || (((alpha->r == 0. && alpha->i == 0.) || *k == 0) &&
(beta->r == 1. && beta->i == 0.))) {
return 0;
}
/* And when alpha.eq.zero. */
/*< IF( ALPHA.EQ.ZERO )THEN >*/
if (alpha->r == 0. && alpha->i == 0.) {
/*< IF( BETA.EQ.ZERO )THEN >*/
if (beta->r == 0. && beta->i == 0.) {
/*< DO 20, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 10, I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< C( I, J ) = ZERO >*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -