📄 dsptrf.f
字号:
*
* W(k) = U(k)*D(k)
*
* where U(k) is the k-th column of U
*
* Perform a rank-1 update of A(1:k-1,1:k-1) as
*
* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)'
*
R1 = ONE / AP( KC+K-1 )
CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
*
* Store U(k) in column k
*
CALL DSCAL( K-1, R1, AP( KC ), 1 )
ELSE
*
* 2-by-2 pivot block D(k): columns k and k-1 now hold
*
* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
*
* where U(k) and U(k-1) are the k-th and (k-1)-th columns
* of U
*
* Perform a rank-2 update of A(1:k-2,1:k-2) as
*
* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )'
*
* Convert this to two rank-1 updates by using the eigen-
* decomposition of D(k)
*
CALL DLAEV2( AP( KC-1 ), AP( KC+K-2 ), AP( KC+K-1 ), R1,
$ R2, C, S )
R1 = ONE / R1
R2 = ONE / R2
CALL DROT( K-2, AP( KNC ), 1, AP( KC ), 1, C, S )
CALL DSPR( UPLO, K-2, -R1, AP( KNC ), 1, AP )
CALL DSPR( UPLO, K-2, -R2, AP( KC ), 1, AP )
*
* Store U(k) and U(k-1) in columns k and k-1
*
CALL DSCAL( K-2, R1, AP( KNC ), 1 )
CALL DSCAL( K-2, R2, AP( KC ), 1 )
CALL DROT( K-2, AP( KNC ), 1, AP( KC ), 1, C, -S )
END IF
END IF
*
* Store details of the interchanges in IPIV
*
IF( KSTEP.EQ.1 ) THEN
IPIV( K ) = KP
ELSE
IPIV( K ) = -KP
IPIV( K-1 ) = -KP
END IF
*
* Decrease K and return to the start of the main loop
*
K = K - KSTEP
KC = KNC - K
GO TO 10
*
ELSE
*
* Factorize A as L*D*L' using the lower triangle of A
*
* K is the main loop index, increasing from 1 to N in steps of
* 1 or 2
*
K = 1
KC = 1
NPP = N*( N+1 ) / 2
40 CONTINUE
KNC = KC
*
* If K > N, exit from loop
*
IF( K.GT.N )
$ GO TO 70
KSTEP = 1
*
* Determine rows and columns to be interchanged and whether
* a 1-by-1 or 2-by-2 pivot block will be used
*
ABSAKK = ABS( AP( KC ) )
*
* IMAX is the row-index of the largest off-diagonal element in
* column K, and COLMAX is its absolute value
*
IF( K.LT.N ) THEN
IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 )
COLMAX = ABS( AP( KC+IMAX-K ) )
ELSE
COLMAX = ZERO
END IF
*
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
*
* Column K is zero: set INFO and continue
*
IF( INFO.EQ.0 )
$ INFO = K
KP = K
ELSE
IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
*
* no interchange, use 1-by-1 pivot block
*
KP = K
ELSE
*
* JMAX is the column-index of the largest off-diagonal
* element in row IMAX, and ROWMAX is its absolute value
*
ROWMAX = ZERO
KX = KC + IMAX - K
DO 50 J = K, IMAX - 1
IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
ROWMAX = ABS( AP( KX ) )
JMAX = J
END IF
KX = KX + N - J
50 CONTINUE
KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
IF( IMAX.LT.N ) THEN
JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 )
ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
END IF
*
IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
*
* no interchange, use 1-by-1 pivot block
*
KP = K
ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
*
* interchange rows and columns K and IMAX, use 1-by-1
* pivot block
*
KP = IMAX
ELSE
*
* interchange rows and columns K+1 and IMAX, use 2-by-2
* pivot block
*
KP = IMAX
KSTEP = 2
END IF
END IF
*
KK = K + KSTEP - 1
IF( KSTEP.EQ.2 )
$ KNC = KNC + N - K + 1
IF( KP.NE.KK ) THEN
*
* Interchange rows and columns KK and KP in the trailing
* submatrix A(k:n,k:n)
*
IF( KP.LT.N )
$ CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
$ 1 )
KX = KNC + KP - KK
DO 60 J = KK + 1, KP - 1
KX = KX + N - J + 1
T = AP( KNC+J-KK )
AP( KNC+J-KK ) = AP( KX )
AP( KX ) = T
60 CONTINUE
T = AP( KNC )
AP( KNC ) = AP( KPC )
AP( KPC ) = T
IF( KSTEP.EQ.2 ) THEN
T = AP( KC+1 )
AP( KC+1 ) = AP( KC+KP-K )
AP( KC+KP-K ) = T
END IF
END IF
*
* Update the trailing submatrix
*
IF( KSTEP.EQ.1 ) THEN
*
* 1-by-1 pivot block D(k): column k now holds
*
* W(k) = L(k)*D(k)
*
* where L(k) is the k-th column of L
*
IF( K.LT.N ) THEN
*
* Perform a rank-1 update of A(k+1:n,k+1:n) as
*
* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)'
*
R1 = ONE / AP( KC )
CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
$ AP( KC+N-K+1 ) )
*
* Store L(k) in column K
*
CALL DSCAL( N-K, R1, AP( KC+1 ), 1 )
END IF
ELSE
*
* 2-by-2 pivot block D(k): columns K and K+1 now hold
*
* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
*
* where L(k) and L(k+1) are the k-th and (k+1)-th columns
* of L
*
IF( K.LT.N-1 ) THEN
*
* Perform a rank-2 update of A(k+2:n,k+2:n) as
*
* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )'
* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )'
*
* Convert this to two rank-1 updates by using the eigen-
* decomposition of D(k)
*
CALL DLAEV2( AP( KC ), AP( KC+1 ), AP( KNC ), R1, R2,
$ C, S )
R1 = ONE / R1
R2 = ONE / R2
CALL DROT( N-K-1, AP( KC+2 ), 1, AP( KNC+1 ), 1, C,
$ S )
CALL DSPR( UPLO, N-K-1, -R1, AP( KC+2 ), 1,
$ AP( KNC+N-K ) )
CALL DSPR( UPLO, N-K-1, -R2, AP( KNC+1 ), 1,
$ AP( KNC+N-K ) )
*
* Store L(k) and L(k+1) in columns k and k+1
*
CALL DSCAL( N-K-1, R1, AP( KC+2 ), 1 )
CALL DSCAL( N-K-1, R2, AP( KNC+1 ), 1 )
CALL DROT( N-K-1, AP( KC+2 ), 1, AP( KNC+1 ), 1, C,
$ -S )
END IF
END IF
END IF
*
* Store details of the interchanges in IPIV
*
IF( KSTEP.EQ.1 ) THEN
IPIV( K ) = KP
ELSE
IPIV( K ) = -KP
IPIV( K+1 ) = -KP
END IF
*
* Increase K and return to the start of the main loop
*
K = K + KSTEP
KC = KNC + N - K + 2
GO TO 40
*
END IF
*
70 CONTINUE
RETURN
*
* End of DSPTRF
*
END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -