📄 dlatrs.c
字号:
/* lapack/double/dlatrs.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b36 = .5;
/*< >*/
/* Subroutine */ int dlatrs_(char *uplo, char *trans, char *diag, char *
normin, integer *n, doublereal *a, integer *lda, doublereal *x,
doublereal *scale, doublereal *cnorm, integer *info, ftnlen uplo_len,
ftnlen trans_len, ftnlen diag_len, ftnlen normin_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1, d__2, d__3;
/* Local variables */
integer i__, j;
doublereal xj, rec, tjj;
integer jinc;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
doublereal xbnd;
integer imax;
doublereal tmax, tjjs=0, xmax, grow, sumj;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *, ftnlen, ftnlen);
doublereal tscal, uscal;
extern doublereal dasum_(integer *, doublereal *, integer *);
integer jlast;
extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
logical upper;
extern /* Subroutine */ int dtrsv_(char *, char *, char *, integer *,
doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen,
ftnlen);
extern doublereal dlamch_(char *, ftnlen);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal bignum;
logical notran;
integer jfirst;
doublereal smlnum;
logical nounit;
(void)uplo_len;
(void)trans_len;
(void)diag_len;
(void)normin_len;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1992 */
/* .. Scalar Arguments .. */
/*< CHARACTER DIAG, NORMIN, TRANS, UPLO >*/
/*< INTEGER INFO, LDA, N >*/
/*< DOUBLE PRECISION SCALE >*/
/* .. */
/* .. Array Arguments .. */
/*< DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DLATRS solves one of the triangular systems */
/* A *x = s*b or A'*x = s*b */
/* with scaling to prevent overflow. Here A is an upper or lower */
/* triangular matrix, A' denotes the transpose of A, x and b are */
/* n-element vectors, and s is a scaling factor, usually less than */
/* or equal to 1, chosen so that the components of x will be less than */
/* the overflow threshold. If the unscaled problem will not cause */
/* overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A */
/* is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
/* non-trivial solution to A*x = 0 is returned. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the matrix A is upper or lower triangular. */
/* = 'U': Upper triangular */
/* = 'L': Lower triangular */
/* TRANS (input) CHARACTER*1 */
/* Specifies the operation applied to A. */
/* = 'N': Solve A * x = s*b (No transpose) */
/* = 'T': Solve A'* x = s*b (Transpose) */
/* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose) */
/* DIAG (input) CHARACTER*1 */
/* Specifies whether or not the matrix A is unit triangular. */
/* = 'N': Non-unit triangular */
/* = 'U': Unit triangular */
/* NORMIN (input) CHARACTER*1 */
/* Specifies whether CNORM has been set or not. */
/* = 'Y': CNORM contains the column norms on entry */
/* = 'N': CNORM is not set on entry. On exit, the norms will */
/* be computed and stored in CNORM. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
/* The triangular matrix A. If UPLO = 'U', the leading n by n */
/* upper triangular part of the array A contains the upper */
/* triangular matrix, and the strictly lower triangular part of */
/* A is not referenced. If UPLO = 'L', the leading n by n lower */
/* triangular part of the array A contains the lower triangular */
/* matrix, and the strictly upper triangular part of A is not */
/* referenced. If DIAG = 'U', the diagonal elements of A are */
/* also not referenced and are assumed to be 1. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max (1,N). */
/* X (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry, the right hand side b of the triangular system. */
/* On exit, X is overwritten by the solution vector x. */
/* SCALE (output) DOUBLE PRECISION */
/* The scaling factor s for the triangular system */
/* A * x = s*b or A'* x = s*b. */
/* If SCALE = 0, the matrix A is singular or badly scaled, and */
/* the vector x is an exact or approximate solution to A*x = 0. */
/* CNORM (input or output) DOUBLE PRECISION array, dimension (N) */
/* If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
/* contains the norm of the off-diagonal part of the j-th column */
/* of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
/* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
/* must be greater than or equal to the 1-norm. */
/* If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
/* returns the 1-norm of the offdiagonal part of the j-th column */
/* of A. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -k, the k-th argument had an illegal value */
/* Further Details */
/* ======= ======= */
/* A rough bound on x is computed; if that is less than overflow, DTRSV */
/* is called, otherwise, specific code is used which checks for possible */
/* overflow or divide-by-zero at every operation. */
/* A columnwise scheme is used for solving A*x = b. The basic algorithm */
/* if A is lower triangular is */
/* x[1:n] := b[1:n] */
/* for j = 1, ..., n */
/* x(j) := x(j) / A(j,j) */
/* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
/* end */
/* Define bounds on the components of x after j iterations of the loop: */
/* M(j) = bound on x[1:j] */
/* G(j) = bound on x[j+1:n] */
/* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}. */
/* Then for iteration j+1 we have */
/* M(j+1) <= G(j) / | A(j+1,j+1) | */
/* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
/* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
/* where CNORM(j+1) is greater than or equal to the infinity-norm of */
/* column j+1 of A, not counting the diagonal. Hence */
/* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
/* 1<=i<=j */
/* and */
/* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
/* 1<=i< j */
/* Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the */
/* reciprocal of the largest M(j), j=1,..,n, is larger than */
/* max(underflow, 1/overflow). */
/* The bound on x(j) is also used to determine when a step in the */
/* columnwise method can be performed without fear of overflow. If */
/* the computed bound is greater than a large constant, x is scaled to */
/* prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
/* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
/* Similarly, a row-wise scheme is used to solve A'*x = b. The basic */
/* algorithm for A upper triangular is */
/* for j = 1, ..., n */
/* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
/* end */
/* We simultaneously compute two bounds */
/* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
/* M(j) = bound on x(i), 1<=i<=j */
/* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we */
/* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
/* Then the bound on x(j) is */
/* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
/* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
/* 1<=i<=j */
/* and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater */
/* than max(underflow, 1/overflow). */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, HALF, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL NOTRAN, NOUNIT, UPPER >*/
/*< INTEGER I, IMAX, J, JFIRST, JINC, JLAST >*/
/*< >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER IDAMAX >*/
/*< DOUBLE PRECISION DASUM, DDOT, DLAMCH >*/
/*< EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DAXPY, DSCAL, DTRSV, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, MAX, MIN >*/
/* .. */
/* .. Executable Statements .. */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
--cnorm;
/* Function Body */
*info = 0;
/*< UPPER = LSAME( UPLO, 'U' ) >*/
upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1);
/*< NOTRAN = LSAME( TRANS, 'N' ) >*/
notran = lsame_(trans, "N", (ftnlen)1, (ftnlen)1);
/*< NOUNIT = LSAME( DIAG, 'N' ) >*/
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
/* Test the input parameters. */
/*< IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN >*/
if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -1 >*/
*info = -1;
/*< >*/
} else if (! notran && ! lsame_(trans, "T", (ftnlen)1, (ftnlen)1) && !
lsame_(trans, "C", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN >*/
} else if (! nounit && ! lsame_(diag, "U", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -3 >*/
*info = -3;
/*< >*/
} else if (! lsame_(normin, "Y", (ftnlen)1, (ftnlen)1) && ! lsame_(normin,
"N", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -5 >*/
*info = -5;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -7 >*/
*info = -7;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'DLATRS', -INFO ) >*/
i__1 = -(*info);
xerbla_("DLATRS", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< >*/
if (*n == 0) {
return 0;
}
/* Determine machine dependent parameters to control overflow. */
/*< SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' ) >*/
smlnum = dlamch_("Safe minimum", (ftnlen)12) / dlamch_("Precision", (
ftnlen)9);
/*< BIGNUM = ONE / SMLNUM >*/
bignum = 1. / smlnum;
/*< SCALE = ONE >*/
*scale = 1.;
/*< IF( LSAME( NORMIN, 'N' ) ) THEN >*/
if (lsame_(normin, "N", (ftnlen)1, (ftnlen)1)) {
/* Compute the 1-norm of each column, not including the diagonal. */
/*< IF( UPPER ) THEN >*/
if (upper) {
/* A is upper triangular. */
/*< DO 10 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< CNORM( J ) = DASUM( J-1, A( 1, J ), 1 ) >*/
i__2 = j - 1;
cnorm[j] = dasum_(&i__2, &a[j * a_dim1 + 1], &c__1);
/*< 10 CONTINUE >*/
/* L10: */
}
/*< ELSE >*/
} else {
/* A is lower triangular. */
/*< DO 20 J = 1, N - 1 >*/
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
/*< CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 ) >*/
i__2 = *n - j;
cnorm[j] = dasum_(&i__2, &a[j + 1 + j * a_dim1], &c__1);
/*< 20 CONTINUE >*/
/* L20: */
}
/*< CNORM( N ) = ZERO >*/
cnorm[*n] = 0.;
/*< END IF >*/
}
/*< END IF >*/
}
/* Scale the column norms by TSCAL if the maximum element in CNORM is */
/* greater than BIGNUM. */
/*< IMAX = IDAMAX( N, CNORM, 1 ) >*/
imax = idamax_(n, &cnorm[1], &c__1);
/*< TMAX = CNORM( IMAX ) >*/
tmax = cnorm[imax];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -