📄 dtgsyl.c
字号:
/* lapack/double/dtgsyl.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__2 = 2;
static integer c_n1 = -1;
static integer c__5 = 5;
static doublereal c_b14 = 0.;
static integer c__0 = 0;
static integer c__1 = 1;
static doublereal c_b53 = -1.;
static doublereal c_b54 = 1.;
/*< >*/
/* Subroutine */ int dtgsyl_(char *trans, integer *ijob, integer *m, integer *
n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
doublereal *c__, integer *ldc, doublereal *d__, integer *ldd,
doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal *
scale, doublereal *dif, doublereal *work, integer *lwork, integer *
iwork, integer *info, ftnlen trans_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3,
i__4;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, k, p, q, ie, je, mb, nb, is, js, pq;
doublereal dsum;
integer ppqq;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *), dgemm_(char *, char *, integer *, integer *, integer *
, doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, ftnlen, ftnlen);
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer ifunc, linfo;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
integer lwmin;
doublereal scale2=0;
extern /* Subroutine */ int dtgsy2_(char *, integer *, integer *, integer
*, doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
integer *, integer *, integer *, ftnlen);
doublereal dscale, scaloc;
extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *, ftnlen),
xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer iround;
logical notran;
integer isolve;
logical lquery;
(void)trans_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< CHARACTER TRANS >*/
/*< >*/
/*< DOUBLE PRECISION DIF, SCALE >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER IWORK( * ) >*/
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* DTGSYL solves the generalized Sylvester equation: */
/* A * R - L * B = scale * C (1) */
/* D * R - L * E = scale * F */
/* where R and L are unknown m-by-n matrices, (A, D), (B, E) and */
/* (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, */
/* respectively, with real entries. (A, D) and (B, E) must be in */
/* generalized (real) Schur canonical form, i.e. A, B are upper quasi */
/* triangular and D, E are upper triangular. */
/* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
/* scaling factor chosen to avoid overflow. */
/* In matrix notation (1) is equivalent to solve Zx = scale b, where */
/* Z is defined as */
/* Z = [ kron(In, A) -kron(B', Im) ] (2) */
/* [ kron(In, D) -kron(E', Im) ]. */
/* Here Ik is the identity matrix of size k and X' is the transpose of */
/* X. kron(X, Y) is the Kronecker product between the matrices X and Y. */
/* If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b, */
/* which is equivalent to solve for R and L in */
/* A' * R + D' * L = scale * C (3) */
/* R * B' + L * E' = scale * (-F) */
/* This case (TRANS = 'T') is used to compute an one-norm-based estimate */
/* of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) */
/* and (B,E), using DLACON. */
/* If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate */
/* of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the */
/* reciprocal of the smallest singular value of Z. See [1-2] for more */
/* information. */
/* This is a level 3 BLAS algorithm. */
/* Arguments */
/* ========= */
/* TRANS (input) CHARACTER*1 */
/* = 'N', solve the generalized Sylvester equation (1). */
/* = 'T', solve the 'transposed' system (3). */
/* IJOB (input) INTEGER */
/* Specifies what kind of functionality to be performed. */
/* =0: solve (1) only. */
/* =1: The functionality of 0 and 3. */
/* =2: The functionality of 0 and 4. */
/* =3: Only an estimate of Dif[(A,D), (B,E)] is computed. */
/* (look ahead strategy IJOB = 1 is used). */
/* =4: Only an estimate of Dif[(A,D), (B,E)] is computed. */
/* ( DGECON on sub-systems is used ). */
/* Not referenced if TRANS = 'T'. */
/* M (input) INTEGER */
/* The order of the matrices A and D, and the row dimension of */
/* the matrices C, F, R and L. */
/* N (input) INTEGER */
/* The order of the matrices B and E, and the column dimension */
/* of the matrices C, F, R and L. */
/* A (input) DOUBLE PRECISION array, dimension (LDA, M) */
/* The upper quasi triangular matrix A. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1, M). */
/* B (input) DOUBLE PRECISION array, dimension (LDB, N) */
/* The upper quasi triangular matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1, N). */
/* C (input/output) DOUBLE PRECISION array, dimension (LDC, N) */
/* On entry, C contains the right-hand-side of the first matrix */
/* equation in (1) or (3). */
/* On exit, if IJOB = 0, 1 or 2, C has been overwritten by */
/* the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, */
/* the solution achieved during the computation of the */
/* Dif-estimate. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1, M). */
/* D (input) DOUBLE PRECISION array, dimension (LDD, M) */
/* The upper triangular matrix D. */
/* LDD (input) INTEGER */
/* The leading dimension of the array D. LDD >= max(1, M). */
/* E (input) DOUBLE PRECISION array, dimension (LDE, N) */
/* The upper triangular matrix E. */
/* LDE (input) INTEGER */
/* The leading dimension of the array E. LDE >= max(1, N). */
/* F (input/output) DOUBLE PRECISION array, dimension (LDF, N) */
/* On entry, F contains the right-hand-side of the second matrix */
/* equation in (1) or (3). */
/* On exit, if IJOB = 0, 1 or 2, F has been overwritten by */
/* the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, */
/* the solution achieved during the computation of the */
/* Dif-estimate. */
/* LDF (input) INTEGER */
/* The leading dimension of the array F. LDF >= max(1, M). */
/* DIF (output) DOUBLE PRECISION */
/* On exit DIF is the reciprocal of a lower bound of the */
/* reciprocal of the Dif-function, i.e. DIF is an upper bound of */
/* Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). */
/* IF IJOB = 0 or TRANS = 'T', DIF is not touched. */
/* SCALE (output) DOUBLE PRECISION */
/* On exit SCALE is the scaling factor in (1) or (3). */
/* If 0 < SCALE < 1, C and F hold the solutions R and L, resp., */
/* to a slightly perturbed system but the input matrices A, B, D */
/* and E have not been changed. If SCALE = 0, C and F hold the */
/* solutions R and L, respectively, to the homogeneous system */
/* with C = F = 0. Normally, SCALE = 1. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
/* If IJOB = 0, WORK is not referenced. Otherwise, */
/* on exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK > = 1. */
/* If IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* IWORK (workspace) INTEGER array, dimension (M+N+6) */
/* INFO (output) INTEGER */
/* =0: successful exit */
/* <0: If INFO = -i, the i-th argument had an illegal value. */
/* >0: (A, D) and (B, E) have common or close eigenvalues. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
/* for Solving the Generalized Sylvester Equation and Estimating the */
/* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
/* Department of Computing Science, Umea University, S-901 87 Umea, */
/* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
/* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
/* No 1, 1996. */
/* [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester */
/* Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. */
/* Appl., 15(4):1045-1060, 1994 */
/* [3] B. Kagstrom and L. Westin, Generalized Schur Methods with */
/* Condition Estimators for Solving the Generalized Sylvester */
/* Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, */
/* July 1989, pp 745-751. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL LQUERY, NOTRAN >*/
/*< >*/
/*< DOUBLE PRECISION DSCALE, DSUM, SCALE2, SCALOC >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER ILAENV >*/
/*< EXTERNAL LSAME, ILAENV >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DCOPY, DGEMM, DLACPY, DSCAL, DTGSY2, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC DBLE, MAX, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/* Decode and test input parameters */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
d_dim1 = *ldd;
d_offset = 1 + d_dim1;
d__ -= d_offset;
e_dim1 = *lde;
e_offset = 1 + e_dim1;
e -= e_offset;
f_dim1 = *ldf;
f_offset = 1 + f_dim1;
f -= f_offset;
--work;
--iwork;
/* Function Body */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -