📄 dtgex2.f
字号:
SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
$ LDZ, J1, N1, N2, WORK, LWORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
LOGICAL WANTQ, WANTZ
INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
$ WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
* (A, B) by an orthogonal equivalence transformation.
*
* (A, B) must be in generalized real Schur canonical form (as returned
* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
* diagonal blocks. B is upper triangular.
*
* Optionally, the matrices Q and Z of generalized Schur vectors are
* updated.
*
* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
*
*
* Arguments
* =========
*
* WANTQ (input) LOGICAL
* .TRUE. : update the left transformation matrix Q;
* .FALSE.: do not update Q.
*
* WANTZ (input) LOGICAL
* .TRUE. : update the right transformation matrix Z;
* .FALSE.: do not update Z.
*
* N (input) INTEGER
* The order of the matrices A and B. N >= 0.
*
* A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N)
* On entry, the matrix A in the pair (A, B).
* On exit, the updated matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N)
* On entry, the matrix B in the pair (A, B).
* On exit, the updated matrix B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
* On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
* On exit, the updated matrix Q.
* Not referenced if WANTQ = .FALSE..
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= 1.
* If WANTQ = .TRUE., LDQ >= N.
*
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
* On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
* On exit, the updated matrix Z.
* Not referenced if WANTZ = .FALSE..
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1.
* If WANTZ = .TRUE., LDZ >= N.
*
* J1 (input) INTEGER
* The index to the first block (A11, B11). 1 <= J1 <= N.
*
* N1 (input) INTEGER
* The order of the first block (A11, B11). N1 = 0, 1 or 2.
*
* N2 (input) INTEGER
* The order of the second block (A22, B22). N2 = 0, 1 or 2.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK).
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* LWORK >= MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 )
*
* INFO (output) INTEGER
* =0: Successful exit
* >0: If INFO = 1, the transformed matrix (A, B) would be
* too far from generalized Schur form; the blocks are
* not swapped and (A, B) and (Q, Z) are unchanged.
* The problem of swapping is too ill-conditioned.
* <0: If INFO = -16: LWORK is too small. Appropriate value
* for LWORK is returned in WORK(1).
*
* Further Details
* ===============
*
* Based on contributions by
* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
* Umea University, S-901 87 Umea, Sweden.
*
* In the current code both weak and strong stability tests are
* performed. The user can omit the strong stability test by changing
* the internal logical parameter WANDS to .FALSE.. See ref. [2] for
* details.
*
* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
* M.S. Moonen et al (eds), Linear Algebra for Large Scale and
* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
*
* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
* Eigenvalues of a Regular Matrix Pair (A, B) and Condition
* Estimation: Theory, Algorithms and Software,
* Report UMINF - 94.04, Department of Computing Science, Umea
* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
* Note 87. To appear in Numerical Algorithms, 1996.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION TEN
PARAMETER ( TEN = 1.0D+01 )
INTEGER LDST
PARAMETER ( LDST = 4 )
LOGICAL WANDS
PARAMETER ( WANDS = .TRUE. )
* ..
* .. Local Scalars ..
LOGICAL DTRONG, WEAK
INTEGER I, IDUM, LINFO, M
DOUBLE PRECISION BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS,
$ F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS
* ..
* .. Local Arrays ..
INTEGER IWORK( LDST )
DOUBLE PRECISION AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
$ IRCOP( LDST, LDST ), LI( LDST, LDST ),
$ LICOP( LDST, LDST ), S( LDST, LDST ),
$ SCPY( LDST, LDST ), T( LDST, LDST ),
$ TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2,
$ DLARTG, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
$ DROT, DSCAL, DTGSY2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Quick return if possible
*
IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
$ RETURN
IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
$ RETURN
M = N1 + N2
IF( LWORK.LT.MAX( N*M, M*M*2 ) ) THEN
INFO = -16
WORK( 1 ) = MAX( N*M, M*M*2 )
RETURN
END IF
*
WEAK = .FALSE.
DTRONG = .FALSE.
*
* Make a local copy of selected block
*
CALL DCOPY( LDST*LDST, ZERO, 0, LI, 1 )
CALL DCOPY( LDST*LDST, ZERO, 0, IR, 1 )
CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
*
* Compute threshold for testing acceptance of swapping.
*
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
DSCALE = ZERO
DSUM = ONE
CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
DNORM = DSCALE*SQRT( DSUM )
THRESH = MAX( TEN*EPS*DNORM, SMLNUM )
*
IF( M.EQ.2 ) THEN
*
* CASE 1: Swap 1-by-1 and 1-by-1 blocks.
*
* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
* using Givens rotations and perform the swap tentatively.
*
F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
SB = ABS( T( 2, 2 ) )
SA = ABS( S( 2, 2 ) )
CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
IR( 2, 1 ) = -IR( 1, 2 )
IR( 2, 2 ) = IR( 1, 1 )
CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
$ IR( 2, 1 ) )
CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
$ IR( 2, 1 ) )
IF( SA.GE.SB ) THEN
CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
$ DDUM )
ELSE
CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
$ DDUM )
END IF
CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
$ LI( 2, 1 ) )
CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
$ LI( 2, 1 ) )
LI( 2, 2 ) = LI( 1, 1 )
LI( 1, 2 ) = -LI( 2, 1 )
*
* Weak stability test:
* |S21| + |T21| <= O(EPS * F-norm((S, T)))
*
WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
WEAK = WS.LE.THRESH
IF( .NOT.WEAK )
$ GO TO 70
*
IF( WANDS ) THEN
*
* Strong stability test:
* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B)))
*
CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
$ M )
CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
$ WORK, M )
CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
$ WORK( M*M+1 ), M )
DSCALE = ZERO
DSUM = ONE
CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
*
CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
$ M )
CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
$ WORK, M )
CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
$ WORK( M*M+1 ), M )
CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
SS = DSCALE*SQRT( DSUM )
DTRONG = SS.LE.THRESH
IF( .NOT.DTRONG )
$ GO TO 70
END IF
*
* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
*
CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
$ IR( 2, 1 ) )
CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
$ IR( 2, 1 ) )
CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
$ LI( 1, 1 ), LI( 2, 1 ) )
CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
$ LI( 1, 1 ), LI( 2, 1 ) )
*
* Set N1-by-N2 (2,1) - blocks to ZERO.
*
A( J1+1, J1 ) = ZERO
B( J1+1, J1 ) = ZERO
*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -