📄 dormqr.c
字号:
/* lapack/double/dormqr.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
static integer c__65 = 65;
/*< >*/
/* Subroutine */ int dormqr_(char *side, char *trans, integer *m, integer *n,
integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
c__, integer *ldc, doublereal *work, integer *lwork, integer *info,
ftnlen side_len, ftnlen trans_len)
{
/* System generated locals */
address a__1[2];
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
i__5;
char ch__1[2];
/* Builtin functions */
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i__;
doublereal t[4160] /* was [65][64] */;
integer i1, i2, i3, ib, ic=0, jc=0, nb=0, mi, ni, nq, nw, iws;
logical left;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer nbmin, iinfo;
extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, ftnlen, ftnlen), dlarfb_(char
*, char *, char *, char *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen,
ftnlen), dlarft_(char *, char *, integer *, integer *, doublereal
*, integer *, doublereal *, doublereal *, integer *, ftnlen,
ftnlen), xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
logical notran;
integer ldwork, lwkopt=0;
logical lquery;
(void)side_len;
(void)trans_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< CHARACTER SIDE, TRANS >*/
/*< INTEGER INFO, K, LDA, LDC, LWORK, M, N >*/
/* .. */
/* .. Array Arguments .. */
/*< DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DORMQR overwrites the general real M-by-N matrix C with */
/* SIDE = 'L' SIDE = 'R' */
/* TRANS = 'N': Q * C C * Q */
/* TRANS = 'T': Q**T * C C * Q**T */
/* where Q is a real orthogonal matrix defined as the product of k */
/* elementary reflectors */
/* Q = H(1) H(2) . . . H(k) */
/* as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N */
/* if SIDE = 'R'. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': apply Q or Q**T from the Left; */
/* = 'R': apply Q or Q**T from the Right. */
/* TRANS (input) CHARACTER*1 */
/* = 'N': No transpose, apply Q; */
/* = 'T': Transpose, apply Q**T. */
/* M (input) INTEGER */
/* The number of rows of the matrix C. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. N >= 0. */
/* K (input) INTEGER */
/* The number of elementary reflectors whose product defines */
/* the matrix Q. */
/* If SIDE = 'L', M >= K >= 0; */
/* if SIDE = 'R', N >= K >= 0. */
/* A (input) DOUBLE PRECISION array, dimension (LDA,K) */
/* The i-th column must contain the vector which defines the */
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* DGEQRF in the first k columns of its array argument A. */
/* A is modified by the routine but restored on exit. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. */
/* If SIDE = 'L', LDA >= max(1,M); */
/* if SIDE = 'R', LDA >= max(1,N). */
/* TAU (input) DOUBLE PRECISION array, dimension (K) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by DGEQRF. */
/* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
/* On entry, the M-by-N matrix C. */
/* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If SIDE = 'L', LWORK >= max(1,N); */
/* if SIDE = 'R', LWORK >= max(1,M). */
/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
/* blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/*< INTEGER NBMAX, LDT >*/
/*< PARAMETER ( NBMAX = 64, LDT = NBMAX+1 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL LEFT, LQUERY, NOTRAN >*/
/*< >*/
/* .. */
/* .. Local Arrays .. */
/*< DOUBLE PRECISION T( LDT, NBMAX ) >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER ILAENV >*/
/*< EXTERNAL LSAME, ILAENV >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DLARFB, DLARFT, DORM2R, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX, MIN >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
/*< LEFT = LSAME( SIDE, 'L' ) >*/
left = lsame_(side, "L", (ftnlen)1, (ftnlen)1);
/*< NOTRAN = LSAME( TRANS, 'N' ) >*/
notran = lsame_(trans, "N", (ftnlen)1, (ftnlen)1);
/*< LQUERY = ( LWORK.EQ.-1 ) >*/
lquery = *lwork == -1;
/* NQ is the order of Q and NW is the minimum dimension of WORK */
/*< IF( LEFT ) THEN >*/
if (left) {
/*< NQ = M >*/
nq = *m;
/*< NW = N >*/
nw = *n;
/*< ELSE >*/
} else {
/*< NQ = N >*/
nq = *n;
/*< NW = M >*/
nw = *m;
/*< END IF >*/
}
/*< IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN >*/
if (! left && ! lsame_(side, "R", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN >*/
} else if (! notran && ! lsame_(trans, "T", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( M.LT.0 ) THEN >*/
} else if (*m < 0) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN >*/
} else if (*k < 0 || *k > nq) {
/*< INFO = -5 >*/
*info = -5;
/*< ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN >*/
} else if (*lda < max(1,nq)) {
/*< INFO = -7 >*/
*info = -7;
/*< ELSE IF( LDC.LT.MAX( 1, M ) ) THEN >*/
} else if (*ldc < max(1,*m)) {
/*< INFO = -10 >*/
*info = -10;
/*< ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN >*/
} else if (*lwork < max(1,nw) && ! lquery) {
/*< INFO = -12 >*/
*info = -12;
/*< END IF >*/
}
/*< IF( INFO.EQ.0 ) THEN >*/
if (*info == 0) {
/* Determine the block size. NB may be at most NBMAX, where NBMAX */
/* is used to define the local array T. */
/*< >*/
/* Computing MIN */
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 64, i__2 = ilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1, (
ftnlen)6, (ftnlen)2);
nb = min(i__1,i__2);
/*< LWKOPT = MAX( 1, NW )*NB >*/
lwkopt = max(1,nw) * nb;
/*< WORK( 1 ) = LWKOPT >*/
work[1] = (doublereal) lwkopt;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'DORMQR', -INFO ) >*/
i__1 = -(*info);
xerbla_("DORMQR", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< ELSE IF( LQUERY ) THEN >*/
} else if (lquery) {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN >*/
if (*m == 0 || *n == 0 || *k == 0) {
/*< WORK( 1 ) = 1 >*/
work[1] = 1.;
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< NBMIN = 2 >*/
nbmin = 2;
/*< LDWORK = NW >*/
ldwork = nw;
/*< IF( NB.GT.1 .AND. NB.LT.K ) THEN >*/
if (nb > 1 && nb < *k) {
/*< IWS = NW*NB >*/
iws = nw * nb;
/*< IF( LWORK.LT.IWS ) THEN >*/
if (*lwork < iws) {
/*< NB = LWORK / LDWORK >*/
nb = *lwork / ldwork;
/*< >*/
/* Computing MAX */
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 2, i__2 = ilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1, (
ftnlen)6, (ftnlen)2);
nbmin = max(i__1,i__2);
/*< END IF >*/
}
/*< ELSE >*/
} else {
/*< IWS = NW >*/
iws = nw;
/*< END IF >*/
}
/*< IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN >*/
if (nb < nbmin || nb >= *k) {
/* Use unblocked code */
/*< >*/
dorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], &iinfo, (ftnlen)1, (ftnlen)1);
/*< ELSE >*/
} else {
/* Use blocked code */
/*< >*/
if ((left && ! notran) || (! left && notran)) {
/*< I1 = 1 >*/
i1 = 1;
/*< I2 = K >*/
i2 = *k;
/*< I3 = NB >*/
i3 = nb;
/*< ELSE >*/
} else {
/*< I1 = ( ( K-1 ) / NB )*NB + 1 >*/
i1 = (*k - 1) / nb * nb + 1;
/*< I2 = 1 >*/
i2 = 1;
/*< I3 = -NB >*/
i3 = -nb;
/*< END IF >*/
}
/*< IF( LEFT ) THEN >*/
if (left) {
/*< NI = N >*/
ni = *n;
/*< JC = 1 >*/
jc = 1;
/*< ELSE >*/
} else {
/*< MI = M >*/
mi = *m;
/*< IC = 1 >*/
ic = 1;
/*< END IF >*/
}
/*< DO 10 I = I1, I2, I3 >*/
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/*< IB = MIN( NB, K-I+1 ) >*/
/* Computing MIN */
i__4 = nb, i__5 = *k - i__ + 1;
ib = min(i__4,i__5);
/* Form the triangular factor of the block reflector */
/* H = H(i) H(i+1) . . . H(i+ib-1) */
/*< >*/
i__4 = nq - i__ + 1;
dlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ *
a_dim1], lda, &tau[i__], t, &c__65, (ftnlen)7, (ftnlen)10)
;
/*< IF( LEFT ) THEN >*/
if (left) {
/* H or H' is applied to C(i:m,1:n) */
/*< MI = M - I + 1 >*/
mi = *m - i__ + 1;
/*< IC = I >*/
ic = i__;
/*< ELSE >*/
} else {
/* H or H' is applied to C(1:m,i:n) */
/*< NI = N - I + 1 >*/
ni = *n - i__ + 1;
/*< JC = I >*/
jc = i__;
/*< END IF >*/
}
/* Apply H or H' */
/*< >*/
dlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[
i__ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc *
c_dim1], ldc, &work[1], &ldwork, (ftnlen)1, (ftnlen)1, (
ftnlen)7, (ftnlen)10);
/*< 10 CONTINUE >*/
/* L10: */
}
/*< END IF >*/
}
/*< WORK( 1 ) = LWKOPT >*/
work[1] = (doublereal) lwkopt;
/*< RETURN >*/
return 0;
/* End of DORMQR */
/*< END >*/
} /* dormqr_ */
#ifdef __cplusplus
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -