📄 dtgsyl.f
字号:
SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
$ LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
$ IWORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
$ LWORK, M, N
DOUBLE PRECISION DIF, SCALE
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ D( LDD, * ), E( LDE, * ), F( LDF, * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* DTGSYL solves the generalized Sylvester equation:
*
* A * R - L * B = scale * C (1)
* D * R - L * E = scale * F
*
* where R and L are unknown m-by-n matrices, (A, D), (B, E) and
* (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
* respectively, with real entries. (A, D) and (B, E) must be in
* generalized (real) Schur canonical form, i.e. A, B are upper quasi
* triangular and D, E are upper triangular.
*
* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
* scaling factor chosen to avoid overflow.
*
* In matrix notation (1) is equivalent to solve Zx = scale b, where
* Z is defined as
*
* Z = [ kron(In, A) -kron(B', Im) ] (2)
* [ kron(In, D) -kron(E', Im) ].
*
* Here Ik is the identity matrix of size k and X' is the transpose of
* X. kron(X, Y) is the Kronecker product between the matrices X and Y.
*
* If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b,
* which is equivalent to solve for R and L in
*
* A' * R + D' * L = scale * C (3)
* R * B' + L * E' = scale * (-F)
*
* This case (TRANS = 'T') is used to compute an one-norm-based estimate
* of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
* and (B,E), using DLACON.
*
* If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate
* of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
* reciprocal of the smallest singular value of Z. See [1-2] for more
* information.
*
* This is a level 3 BLAS algorithm.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER*1
* = 'N', solve the generalized Sylvester equation (1).
* = 'T', solve the 'transposed' system (3).
*
* IJOB (input) INTEGER
* Specifies what kind of functionality to be performed.
* =0: solve (1) only.
* =1: The functionality of 0 and 3.
* =2: The functionality of 0 and 4.
* =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
* (look ahead strategy IJOB = 1 is used).
* =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
* ( DGECON on sub-systems is used ).
* Not referenced if TRANS = 'T'.
*
* M (input) INTEGER
* The order of the matrices A and D, and the row dimension of
* the matrices C, F, R and L.
*
* N (input) INTEGER
* The order of the matrices B and E, and the column dimension
* of the matrices C, F, R and L.
*
* A (input) DOUBLE PRECISION array, dimension (LDA, M)
* The upper quasi triangular matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1, M).
*
* B (input) DOUBLE PRECISION array, dimension (LDB, N)
* The upper quasi triangular matrix B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1, N).
*
* C (input/output) DOUBLE PRECISION array, dimension (LDC, N)
* On entry, C contains the right-hand-side of the first matrix
* equation in (1) or (3).
* On exit, if IJOB = 0, 1 or 2, C has been overwritten by
* the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
* the solution achieved during the computation of the
* Dif-estimate.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1, M).
*
* D (input) DOUBLE PRECISION array, dimension (LDD, M)
* The upper triangular matrix D.
*
* LDD (input) INTEGER
* The leading dimension of the array D. LDD >= max(1, M).
*
* E (input) DOUBLE PRECISION array, dimension (LDE, N)
* The upper triangular matrix E.
*
* LDE (input) INTEGER
* The leading dimension of the array E. LDE >= max(1, N).
*
* F (input/output) DOUBLE PRECISION array, dimension (LDF, N)
* On entry, F contains the right-hand-side of the second matrix
* equation in (1) or (3).
* On exit, if IJOB = 0, 1 or 2, F has been overwritten by
* the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
* the solution achieved during the computation of the
* Dif-estimate.
*
* LDF (input) INTEGER
* The leading dimension of the array F. LDF >= max(1, M).
*
* DIF (output) DOUBLE PRECISION
* On exit DIF is the reciprocal of a lower bound of the
* reciprocal of the Dif-function, i.e. DIF is an upper bound of
* Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
* IF IJOB = 0 or TRANS = 'T', DIF is not touched.
*
* SCALE (output) DOUBLE PRECISION
* On exit SCALE is the scaling factor in (1) or (3).
* If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
* to a slightly perturbed system but the input matrices A, B, D
* and E have not been changed. If SCALE = 0, C and F hold the
* solutions R and L, respectively, to the homogeneous system
* with C = F = 0. Normally, SCALE = 1.
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
* If IJOB = 0, WORK is not referenced. Otherwise,
* on exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK > = 1.
* If IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* IWORK (workspace) INTEGER array, dimension (M+N+6)
*
* INFO (output) INTEGER
* =0: successful exit
* <0: If INFO = -i, the i-th argument had an illegal value.
* >0: (A, D) and (B, E) have common or close eigenvalues.
*
* Further Details
* ===============
*
* Based on contributions by
* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
* Umea University, S-901 87 Umea, Sweden.
*
* [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
* for Solving the Generalized Sylvester Equation and Estimating the
* Separation between Regular Matrix Pairs, Report UMINF - 93.23,
* Department of Computing Science, Umea University, S-901 87 Umea,
* Sweden, December 1993, Revised April 1994, Also as LAPACK Working
* Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
* No 1, 1996.
*
* [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
* Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
* Appl., 15(4):1045-1060, 1994
*
* [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
* Condition Estimators for Solving the Generalized Sylvester
* Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
* July 1989, pp 745-751.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, NOTRAN
INTEGER I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
$ LINFO, LWMIN, MB, NB, P, PPQQ, PQ, Q
DOUBLE PRECISION DSCALE, DSUM, SCALE2, SCALOC
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DLACPY, DSCAL, DTGSY2, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Decode and test input parameters
*
INFO = 0
NOTRAN = LSAME( TRANS, 'N' )
LQUERY = ( LWORK.EQ.-1 )
*
IF( ( IJOB.EQ.1 .OR. IJOB.EQ.2 ) .AND. NOTRAN ) THEN
LWMIN = MAX( 1, 2*M*N )
ELSE
LWMIN = 1
END IF
*
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
INFO = -1
ELSE IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
INFO = -2
ELSE IF( M.LE.0 ) THEN
INFO = -3
ELSE IF( N.LE.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
INFO = -12
ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -16
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -20
END IF
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LWMIN
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTGSYL', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Determine optimal block sizes MB and NB
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -