📄 dlascl.c
字号:
/* lapack/double/dlascl.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) >*/
/* Subroutine */ int dlascl_(char *type__, integer *kl, integer *ku,
doublereal *cfrom, doublereal *cto, integer *m, integer *n,
doublereal *a, integer *lda, integer *info, ftnlen type_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
/* Local variables */
integer i__, j, k1, k2, k3, k4;
doublereal mul, cto1;
logical done;
doublereal ctoc;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer itype;
doublereal cfrom1;
extern doublereal dlamch_(char *, ftnlen);
doublereal cfromc;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal bignum, smlnum;
(void)type_len;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* February 29, 1992 */
/* .. Scalar Arguments .. */
/*< CHARACTER TYPE >*/
/*< INTEGER INFO, KL, KU, LDA, M, N >*/
/*< DOUBLE PRECISION CFROM, CTO >*/
/* .. */
/* .. Array Arguments .. */
/*< DOUBLE PRECISION A( LDA, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DLASCL multiplies the M by N real matrix A by the real scalar */
/* CTO/CFROM. This is done without over/underflow as long as the final */
/* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
/* A may be full, upper triangular, lower triangular, upper Hessenberg, */
/* or banded. */
/* Arguments */
/* ========= */
/* TYPE (input) CHARACTER*1 */
/* TYPE indices the storage type of the input matrix. */
/* = 'G': A is a full matrix. */
/* = 'L': A is a lower triangular matrix. */
/* = 'U': A is an upper triangular matrix. */
/* = 'H': A is an upper Hessenberg matrix. */
/* = 'B': A is a symmetric band matrix with lower bandwidth KL */
/* and upper bandwidth KU and with the only the lower */
/* half stored. */
/* = 'Q': A is a symmetric band matrix with lower bandwidth KL */
/* and upper bandwidth KU and with the only the upper */
/* half stored. */
/* = 'Z': A is a band matrix with lower bandwidth KL and upper */
/* bandwidth KU. */
/* KL (input) INTEGER */
/* The lower bandwidth of A. Referenced only if TYPE = 'B', */
/* 'Q' or 'Z'. */
/* KU (input) INTEGER */
/* The upper bandwidth of A. Referenced only if TYPE = 'B', */
/* 'Q' or 'Z'. */
/* CFROM (input) DOUBLE PRECISION */
/* CTO (input) DOUBLE PRECISION */
/* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
/* without over/underflow if the final result CTO*A(I,J)/CFROM */
/* can be represented without over/underflow. CFROM must be */
/* nonzero. */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,M) */
/* The matrix to be multiplied by CTO/CFROM. See TYPE for the */
/* storage type. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* INFO (output) INTEGER */
/* 0 - successful exit */
/* <0 - if INFO = -i, the i-th argument had an illegal value. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL DONE >*/
/*< INTEGER I, ITYPE, J, K1, K2, K3, K4 >*/
/*< DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< DOUBLE PRECISION DLAMCH >*/
/*< EXTERNAL LSAME, DLAMCH >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, MAX, MIN >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
*info = 0;
/*< IF( LSAME( TYPE, 'G' ) ) THEN >*/
if (lsame_(type__, "G", (ftnlen)1, (ftnlen)1)) {
/*< ITYPE = 0 >*/
itype = 0;
/*< ELSE IF( LSAME( TYPE, 'L' ) ) THEN >*/
} else if (lsame_(type__, "L", (ftnlen)1, (ftnlen)1)) {
/*< ITYPE = 1 >*/
itype = 1;
/*< ELSE IF( LSAME( TYPE, 'U' ) ) THEN >*/
} else if (lsame_(type__, "U", (ftnlen)1, (ftnlen)1)) {
/*< ITYPE = 2 >*/
itype = 2;
/*< ELSE IF( LSAME( TYPE, 'H' ) ) THEN >*/
} else if (lsame_(type__, "H", (ftnlen)1, (ftnlen)1)) {
/*< ITYPE = 3 >*/
itype = 3;
/*< ELSE IF( LSAME( TYPE, 'B' ) ) THEN >*/
} else if (lsame_(type__, "B", (ftnlen)1, (ftnlen)1)) {
/*< ITYPE = 4 >*/
itype = 4;
/*< ELSE IF( LSAME( TYPE, 'Q' ) ) THEN >*/
} else if (lsame_(type__, "Q", (ftnlen)1, (ftnlen)1)) {
/*< ITYPE = 5 >*/
itype = 5;
/*< ELSE IF( LSAME( TYPE, 'Z' ) ) THEN >*/
} else if (lsame_(type__, "Z", (ftnlen)1, (ftnlen)1)) {
/*< ITYPE = 6 >*/
itype = 6;
/*< ELSE >*/
} else {
/*< ITYPE = -1 >*/
itype = -1;
/*< END IF >*/
}
/*< IF( ITYPE.EQ.-1 ) THEN >*/
if (itype == -1) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( CFROM.EQ.ZERO ) THEN >*/
} else if (*cfrom == 0.) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( M.LT.0 ) THEN >*/
} else if (*m < 0) {
/*< INFO = -6 >*/
*info = -6;
/*< >*/
} else if (*n < 0 || (itype == 4 && *n != *m) || (itype == 5 && *n != *m)) {
/*< INFO = -7 >*/
*info = -7;
/*< ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN >*/
} else if (itype <= 3 && *lda < max(1,*m)) {
/*< INFO = -9 >*/
*info = -9;
/*< ELSE IF( ITYPE.GE.4 ) THEN >*/
} else if (itype >= 4) {
/*< IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN >*/
/* Computing MAX */
i__1 = *m - 1;
if (*kl < 0 || *kl > max(i__1,0)) {
/*< INFO = -2 >*/
*info = -2;
/*< >*/
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = *n - 1;
if (*ku < 0 || *ku > max(i__1,0) || ((itype == 4 || itype == 5) &&
*kl != *ku)) {
/*< INFO = -3 >*/
*info = -3;
/*< >*/
} else if ((itype == 4 && *lda < *kl + 1) || (itype == 5 && *lda < *
ku + 1) || (itype == 6 && *lda < (*kl << 1) + *ku + 1)) {
/*< INFO = -9 >*/
*info = -9;
/*< END IF >*/
}
}
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'DLASCL', -INFO ) >*/
i__1 = -(*info);
xerbla_("DLASCL", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< >*/
if (*n == 0 || *m == 0) {
return 0;
}
/* Get machine parameters */
/*< SMLNUM = DLAMCH( 'S' ) >*/
smlnum = dlamch_("S", (ftnlen)1);
/*< BIGNUM = ONE / SMLNUM >*/
bignum = 1. / smlnum;
/*< CFROMC = CFROM >*/
cfromc = *cfrom;
/*< CTOC = CTO >*/
ctoc = *cto;
/*< 10 CONTINUE >*/
L10:
/*< CFROM1 = CFROMC*SMLNUM >*/
cfrom1 = cfromc * smlnum;
/*< CTO1 = CTOC / BIGNUM >*/
cto1 = ctoc / bignum;
/*< IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN >*/
if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) {
/*< MUL = SMLNUM >*/
mul = smlnum;
/*< DONE = .FALSE. >*/
done = FALSE_;
/*< CFROMC = CFROM1 >*/
cfromc = cfrom1;
/*< ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN >*/
} else if (abs(cto1) > abs(cfromc)) {
/*< MUL = BIGNUM >*/
mul = bignum;
/*< DONE = .FALSE. >*/
done = FALSE_;
/*< CTOC = CTO1 >*/
ctoc = cto1;
/*< ELSE >*/
} else {
/*< MUL = CTOC / CFROMC >*/
mul = ctoc / cfromc;
/*< DONE = .TRUE. >*/
done = TRUE_;
/*< END IF >*/
}
/*< IF( ITYPE.EQ.0 ) THEN >*/
if (itype == 0) {
/* Full matrix */
/*< DO 30 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 20 I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = A( I, J )*MUL >*/
a[i__ + j * a_dim1] *= mul;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< 30 CONTINUE >*/
/* L30: */
}
/*< ELSE IF( ITYPE.EQ.1 ) THEN >*/
} else if (itype == 1) {
/* Lower triangular matrix */
/*< DO 50 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 40 I = J, M >*/
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
/*< A( I, J ) = A( I, J )*MUL >*/
a[i__ + j * a_dim1] *= mul;
/*< 40 CONTINUE >*/
/* L40: */
}
/*< 50 CONTINUE >*/
/* L50: */
}
/*< ELSE IF( ITYPE.EQ.2 ) THEN >*/
} else if (itype == 2) {
/* Upper triangular matrix */
/*< DO 70 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 60 I = 1, MIN( J, M ) >*/
i__2 = min(j,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = A( I, J )*MUL >*/
a[i__ + j * a_dim1] *= mul;
/*< 60 CONTINUE >*/
/* L60: */
}
/*< 70 CONTINUE >*/
/* L70: */
}
/*< ELSE IF( ITYPE.EQ.3 ) THEN >*/
} else if (itype == 3) {
/* Upper Hessenberg matrix */
/*< DO 90 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 80 I = 1, MIN( J+1, M ) >*/
/* Computing MIN */
i__3 = j + 1;
i__2 = min(i__3,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = A( I, J )*MUL >*/
a[i__ + j * a_dim1] *= mul;
/*< 80 CONTINUE >*/
/* L80: */
}
/*< 90 CONTINUE >*/
/* L90: */
}
/*< ELSE IF( ITYPE.EQ.4 ) THEN >*/
} else if (itype == 4) {
/* Lower half of a symmetric band matrix */
/*< K3 = KL + 1 >*/
k3 = *kl + 1;
/*< K4 = N + 1 >*/
k4 = *n + 1;
/*< DO 110 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 100 I = 1, MIN( K3, K4-J ) >*/
/* Computing MIN */
i__3 = k3, i__4 = k4 - j;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = A( I, J )*MUL >*/
a[i__ + j * a_dim1] *= mul;
/*< 100 CONTINUE >*/
/* L100: */
}
/*< 110 CONTINUE >*/
/* L110: */
}
/*< ELSE IF( ITYPE.EQ.5 ) THEN >*/
} else if (itype == 5) {
/* Upper half of a symmetric band matrix */
/*< K1 = KU + 2 >*/
k1 = *ku + 2;
/*< K3 = KU + 1 >*/
k3 = *ku + 1;
/*< DO 130 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 120 I = MAX( K1-J, 1 ), K3 >*/
/* Computing MAX */
i__2 = k1 - j;
i__3 = k3;
for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/*< A( I, J ) = A( I, J )*MUL >*/
a[i__ + j * a_dim1] *= mul;
/*< 120 CONTINUE >*/
/* L120: */
}
/*< 130 CONTINUE >*/
/* L130: */
}
/*< ELSE IF( ITYPE.EQ.6 ) THEN >*/
} else if (itype == 6) {
/* Band matrix */
/*< K1 = KL + KU + 2 >*/
k1 = *kl + *ku + 2;
/*< K2 = KL + 1 >*/
k2 = *kl + 1;
/*< K3 = 2*KL + KU + 1 >*/
k3 = (*kl << 1) + *ku + 1;
/*< K4 = KL + KU + 1 + M >*/
k4 = *kl + *ku + 1 + *m;
/*< DO 150 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J ) >*/
/* Computing MAX */
i__3 = k1 - j;
/* Computing MIN */
i__4 = k3, i__5 = k4 - j;
i__2 = min(i__4,i__5);
for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
/*< A( I, J ) = A( I, J )*MUL >*/
a[i__ + j * a_dim1] *= mul;
/*< 140 CONTINUE >*/
/* L140: */
}
/*< 150 CONTINUE >*/
/* L150: */
}
/*< END IF >*/
}
/*< >*/
if (! done) {
goto L10;
}
/*< RETURN >*/
return 0;
/* End of DLASCL */
/*< END >*/
} /* dlascl_ */
#ifdef __cplusplus
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -