⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtgsen.c

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 C
📖 第 1 页 / 共 3 页
字号:
/* lapack/double/dtgsen.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c__2 = 2;
static doublereal c_b28 = 1.;

/*<    >*/
/* Subroutine */ int dtgsen_(integer *ijob, logical *wantq, logical *wantz, 
        logical *select, integer *n, doublereal *a, integer *lda, doublereal *
        b, integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
        beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz, 
        integer *m, doublereal *pl, doublereal *pr, doublereal *dif, 
        doublereal *work, integer *lwork, integer *iwork, integer *liwork, 
        integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
            z_offset, i__1, i__2;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);

    /* Local variables */
    integer i__, k, n1, n2, kk, ks, mn2, ijb;
    doublereal eps;
    integer kase;
    logical pair;
    integer ierr;
    doublereal dsum;
    logical swap;
    extern /* Subroutine */ int dlag2_(doublereal *, integer *, doublereal *, 
            integer *, doublereal *, doublereal *, doublereal *, doublereal *,
             doublereal *, doublereal *);
    logical wantd;
    integer lwmin;
    logical wantp, wantd1, wantd2;
    extern doublereal dlamch_(char *, ftnlen);
    doublereal dscale;
    extern /* Subroutine */ int dlacon_(integer *, doublereal *, doublereal *,
             integer *, doublereal *, integer *);
    doublereal rdscal;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
            doublereal *, integer *, doublereal *, integer *, ftnlen), 
            xerbla_(char *, integer *, ftnlen), dtgexc_(logical *, logical *, 
            integer *, doublereal *, integer *, doublereal *, integer *, 
            doublereal *, integer *, doublereal *, integer *, integer *, 
            integer *, doublereal *, integer *, integer *), dlassq_(integer *,
             doublereal *, integer *, doublereal *, doublereal *);
    integer liwmin;
    extern /* Subroutine */ int dtgsyl_(char *, integer *, integer *, integer 
            *, doublereal *, integer *, doublereal *, integer *, doublereal *,
             integer *, doublereal *, integer *, doublereal *, integer *, 
            doublereal *, integer *, doublereal *, doublereal *, doublereal *,
             integer *, integer *, integer *, ftnlen);
    doublereal smlnum;
    logical lquery;


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*<       LOGICAL            WANTQ, WANTZ >*/
/*<    >*/
/*<       DOUBLE PRECISION   PL, PR >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       LOGICAL            SELECT( * ) >*/
/*<       INTEGER            IWORK( * ) >*/
/*<    >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DTGSEN reorders the generalized real Schur decomposition of a real */
/*  matrix pair (A, B) (in terms of an orthonormal equivalence trans- */
/*  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues */
/*  appears in the leading diagonal blocks of the upper quasi-triangular */
/*  matrix A and the upper triangular B. The leading columns of Q and */
/*  Z form orthonormal bases of the corresponding left and right eigen- */
/*  spaces (deflating subspaces). (A, B) must be in generalized real */
/*  Schur canonical form (as returned by DGGES), i.e. A is block upper */
/*  triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper */
/*  triangular. */

/*  DTGSEN also computes the generalized eigenvalues */

/*              w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) */

/*  of the reordered matrix pair (A, B). */

/*  Optionally, DTGSEN computes the estimates of reciprocal condition */
/*  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), */
/*  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) */
/*  between the matrix pairs (A11, B11) and (A22,B22) that correspond to */
/*  the selected cluster and the eigenvalues outside the cluster, resp., */
/*  and norms of "projections" onto left and right eigenspaces w.r.t. */
/*  the selected cluster in the (1,1)-block. */

/*  Arguments */
/*  ========= */

/*  IJOB    (input) INTEGER */
/*          Specifies whether condition numbers are required for the */
/*          cluster of eigenvalues (PL and PR) or the deflating subspaces */
/*          (Difu and Difl): */
/*           =0: Only reorder w.r.t. SELECT. No extras. */
/*           =1: Reciprocal of norms of "projections" onto left and right */
/*               eigenspaces w.r.t. the selected cluster (PL and PR). */
/*           =2: Upper bounds on Difu and Difl. F-norm-based estimate */
/*               (DIF(1:2)). */
/*           =3: Estimate of Difu and Difl. 1-norm-based estimate */
/*               (DIF(1:2)). */
/*               About 5 times as expensive as IJOB = 2. */
/*           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic */
/*               version to get it all. */
/*           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) */

/*  WANTQ   (input) LOGICAL */
/*          .TRUE. : update the left transformation matrix Q; */
/*          .FALSE.: do not update Q. */

/*  WANTZ   (input) LOGICAL */
/*          .TRUE. : update the right transformation matrix Z; */
/*          .FALSE.: do not update Z. */

/*  SELECT  (input) LOGICAL array, dimension (N) */
/*          SELECT specifies the eigenvalues in the selected cluster. */
/*          To select a real eigenvalue w(j), SELECT(j) must be set to */
/*          .TRUE.. To select a complex conjugate pair of eigenvalues */
/*          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
/*          either SELECT(j) or SELECT(j+1) or both must be set to */
/*          .TRUE.; a complex conjugate pair of eigenvalues must be */
/*          either both included in the cluster or both excluded. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B. N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension(LDA,N) */
/*          On entry, the upper quasi-triangular matrix A, with (A, B) in */
/*          generalized real Schur canonical form. */
/*          On exit, A is overwritten by the reordered matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,N). */

/*  B       (input/output) DOUBLE PRECISION array, dimension(LDB,N) */
/*          On entry, the upper triangular matrix B, with (A, B) in */
/*          generalized real Schur canonical form. */
/*          On exit, B is overwritten by the reordered matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,N). */

/*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
/*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
/*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
/*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
/*          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i */
/*          and BETA(j),j=1,...,N  are the diagonals of the complex Schur */
/*          form (S,T) that would result if the 2-by-2 diagonal blocks of */
/*          the real generalized Schur form of (A,B) were further reduced */
/*          to triangular form using complex unitary transformations. */
/*          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
/*          positive, then the j-th and (j+1)-st eigenvalues are a */
/*          complex conjugate pair, with ALPHAI(j+1) negative. */

/*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
/*          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. */
/*          On exit, Q has been postmultiplied by the left orthogonal */
/*          transformation matrix which reorder (A, B); The leading M */
/*          columns of Q form orthonormal bases for the specified pair of */
/*          left eigenspaces (deflating subspaces). */
/*          If WANTQ = .FALSE., Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  LDQ >= 1; */
/*          and if WANTQ = .TRUE., LDQ >= N. */

/*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
/*          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. */
/*          On exit, Z has been postmultiplied by the left orthogonal */
/*          transformation matrix which reorder (A, B); The leading M */
/*          columns of Z form orthonormal bases for the specified pair of */
/*          left eigenspaces (deflating subspaces). */
/*          If WANTZ = .FALSE., Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z. LDZ >= 1; */
/*          If WANTZ = .TRUE., LDZ >= N. */

/*  M       (output) INTEGER */
/*          The dimension of the specified pair of left and right eigen- */
/*          spaces (deflating subspaces). 0 <= M <= N. */

/*  PL, PR  (output) DOUBLE PRECISION */
/*          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the */
/*          reciprocal of the norm of "projections" onto left and right */
/*          eigenspaces with respect to the selected cluster. */
/*          0 < PL, PR <= 1. */
/*          If M = 0 or M = N, PL = PR  = 1. */
/*          If IJOB = 0, 2 or 3, PL and PR are not referenced. */

/*  DIF     (output) DOUBLE PRECISION array, dimension (2). */
/*          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. */
/*          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on */
/*          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based */
/*          estimates of Difu and Difl. */
/*          If M = 0 or N, DIF(1:2) = F-norm([A, B]). */
/*          If IJOB = 0 or 1, DIF is not referenced. */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
/*          IF IJOB = 0, WORK is not referenced.  Otherwise, */
/*          on exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >=  4*N+16. */
/*          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). */
/*          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK) */
/*          IF IJOB = 0, IWORK is not referenced.  Otherwise, */
/*          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. LIWORK >= 1. */
/*          If IJOB = 1, 2 or 4, LIWORK >=  N+6. */
/*          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal size of the IWORK array, */
/*          returns this value as the first entry of the IWORK array, and */
/*          no error message related to LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*            =0: Successful exit. */
/*            <0: If INFO = -i, the i-th argument had an illegal value. */
/*            =1: Reordering of (A, B) failed because the transformed */
/*                matrix pair (A, B) would be too far from generalized */
/*                Schur form; the problem is very ill-conditioned. */
/*                (A, B) may have been partially reordered. */
/*                If requested, 0 is returned in DIF(*), PL and PR. */

/*  Further Details */
/*  =============== */

/*  DTGSEN first collects the selected eigenvalues by computing */
/*  orthogonal U and W that move them to the top left corner of (A, B). */
/*  In other words, the selected eigenvalues are the eigenvalues of */
/*  (A11, B11) in: */

/*                U'*(A, B)*W = (A11 A12) (B11 B12) n1 */
/*                              ( 0  A22),( 0  B22) n2 */
/*                                n1  n2    n1  n2 */

/*  where N = n1+n2 and U' means the transpose of U. The first n1 columns */
/*  of U and W span the specified pair of left and right eigenspaces */
/*  (deflating subspaces) of (A, B). */

/*  If (A, B) has been obtained from the generalized real Schur */
/*  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the */
/*  reordered generalized real Schur form of (C, D) is given by */

/*           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)', */

/*  and the first n1 columns of Q*U and Z*W span the corresponding */
/*  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). */

/*  Note that if the selected eigenvalue is sufficiently ill-conditioned, */
/*  then its value may differ significantly from its value before */
/*  reordering. */

/*  The reciprocal condition numbers of the left and right eigenspaces */
/*  spanned by the first n1 columns of U and W (or Q*U and Z*W) may */
/*  be returned in DIF(1:2), corresponding to Difu and Difl, resp. */

/*  The Difu and Difl are defined as: */

/*       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) */
/*  and */
/*       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], */

/*  where sigma-min(Zu) is the smallest singular value of the */
/*  (2*n1*n2)-by-(2*n1*n2) matrix */

/*       Zu = [ kron(In2, A11)  -kron(A22', In1) ] */
/*            [ kron(In2, B11)  -kron(B22', In1) ]. */

/*  Here, Inx is the identity matrix of size nx and A22' is the */
/*  transpose of A22. kron(X, Y) is the Kronecker product between */
/*  the matrices X and Y. */

/*  When DIF(2) is small, small changes in (A, B) can cause large changes */
/*  in the deflating subspace. An approximate (asymptotic) bound on the */
/*  maximum angular error in the computed deflating subspaces is */

/*       EPS * norm((A, B)) / DIF(2), */

/*  where EPS is the machine precision. */

/*  The reciprocal norm of the projectors on the left and right */
/*  eigenspaces associated with (A11, B11) may be returned in PL and PR. */
/*  They are computed as follows. First we compute L and R so that */
/*  P*(A, B)*Q is block diagonal, where */

/*       P = ( I -L ) n1           Q = ( I R ) n1 */
/*           ( 0  I ) n2    and        ( 0 I ) n2 */
/*             n1 n2                    n1 n2 */

/*  and (L, R) is the solution to the generalized Sylvester equation */

/*       A11*R - L*A22 = -A12 */
/*       B11*R - L*B22 = -B12 */

/*  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). */
/*  An approximate (asymptotic) bound on the average absolute error of */
/*  the selected eigenvalues is */

/*       EPS * norm((A, B)) / PL. */

/*  There are also global error bounds which valid for perturbations up */
/*  to a certain restriction:  A lower bound (x) on the smallest */
/*  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and */
/*  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), */
/*  (i.e. (A + E, B + F), is */

/*   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). */

/*  An approximate bound on x can be computed from DIF(1:2), PL and PR. */

/*  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed */
/*  (L', R') and unperturbed (L, R) left and right deflating subspaces */
/*  associated with the selected cluster in the (1,1)-blocks can be */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -