📄 dlag2.c
字号:
/* lapack/double/dlag2.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< >*/
/* Subroutine */ int dlag2_(doublereal *a, integer *lda, doublereal *b,
integer *ldb, doublereal *safmin, doublereal *scale1, doublereal *
scale2, doublereal *wr1, doublereal *wr2, doublereal *wi)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset;
doublereal d__1, d__2, d__3, d__4, d__5, d__6;
/* Builtin functions */
double sqrt(doublereal), d_sign(doublereal *, doublereal *);
/* Local variables */
doublereal r__, c1, c2, c3, c4, c5, s1, s2, a11, a12, a21, a22, b11, b12,
b22, pp, qq, ss, as11, as12, as22, sum, abi22, diff, bmin, wbig,
wabs, wdet, binv11, binv22, discr, anorm, bnorm, bsize, shift,
rtmin, rtmax, wsize, ascale, bscale, wscale, safmax, wsmall;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* March 31, 1993 */
/* .. Scalar Arguments .. */
/*< INTEGER LDA, LDB >*/
/*< DOUBLE PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2 >*/
/* .. */
/* .. Array Arguments .. */
/*< DOUBLE PRECISION A( LDA, * ), B( LDB, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue */
/* problem A - w B, with scaling as necessary to avoid over-/underflow. */
/* The scaling factor "s" results in a modified eigenvalue equation */
/* s A - w B */
/* where s is a non-negative scaling factor chosen so that w, w B, */
/* and s A do not overflow and, if possible, do not underflow, either. */
/* Arguments */
/* ========= */
/* A (input) DOUBLE PRECISION array, dimension (LDA, 2) */
/* On entry, the 2 x 2 matrix A. It is assumed that its 1-norm */
/* is less than 1/SAFMIN. Entries less than */
/* sqrt(SAFMIN)*norm(A) are subject to being treated as zero. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= 2. */
/* B (input) DOUBLE PRECISION array, dimension (LDB, 2) */
/* On entry, the 2 x 2 upper triangular matrix B. It is */
/* assumed that the one-norm of B is less than 1/SAFMIN. The */
/* diagonals should be at least sqrt(SAFMIN) times the largest */
/* element of B (in absolute value); if a diagonal is smaller */
/* than that, then +/- sqrt(SAFMIN) will be used instead of */
/* that diagonal. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= 2. */
/* SAFMIN (input) DOUBLE PRECISION */
/* The smallest positive number s.t. 1/SAFMIN does not */
/* overflow. (This should always be DLAMCH('S') -- it is an */
/* argument in order to avoid having to call DLAMCH frequently.) */
/* SCALE1 (output) DOUBLE PRECISION */
/* A scaling factor used to avoid over-/underflow in the */
/* eigenvalue equation which defines the first eigenvalue. If */
/* the eigenvalues are complex, then the eigenvalues are */
/* ( WR1 +/- WI i ) / SCALE1 (which may lie outside the */
/* exponent range of the machine), SCALE1=SCALE2, and SCALE1 */
/* will always be positive. If the eigenvalues are real, then */
/* the first (real) eigenvalue is WR1 / SCALE1 , but this may */
/* overflow or underflow, and in fact, SCALE1 may be zero or */
/* less than the underflow threshhold if the exact eigenvalue */
/* is sufficiently large. */
/* SCALE2 (output) DOUBLE PRECISION */
/* A scaling factor used to avoid over-/underflow in the */
/* eigenvalue equation which defines the second eigenvalue. If */
/* the eigenvalues are complex, then SCALE2=SCALE1. If the */
/* eigenvalues are real, then the second (real) eigenvalue is */
/* WR2 / SCALE2 , but this may overflow or underflow, and in */
/* fact, SCALE2 may be zero or less than the underflow */
/* threshhold if the exact eigenvalue is sufficiently large. */
/* WR1 (output) DOUBLE PRECISION */
/* If the eigenvalue is real, then WR1 is SCALE1 times the */
/* eigenvalue closest to the (2,2) element of A B**(-1). If the */
/* eigenvalue is complex, then WR1=WR2 is SCALE1 times the real */
/* part of the eigenvalues. */
/* WR2 (output) DOUBLE PRECISION */
/* If the eigenvalue is real, then WR2 is SCALE2 times the */
/* other eigenvalue. If the eigenvalue is complex, then */
/* WR1=WR2 is SCALE1 times the real part of the eigenvalues. */
/* WI (output) DOUBLE PRECISION */
/* If the eigenvalue is real, then WI is zero. If the */
/* eigenvalue is complex, then WI is SCALE1 times the imaginary */
/* part of the eigenvalues. WI will always be non-negative. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE, TWO >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) >*/
/*< DOUBLE PRECISION HALF >*/
/*< PARAMETER ( HALF = ONE / TWO ) >*/
/*< DOUBLE PRECISION FUZZY1 >*/
/*< PARAMETER ( FUZZY1 = ONE+1.0D-5 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, MAX, MIN, SIGN, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/*< RTMIN = SQRT( SAFMIN ) >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
rtmin = sqrt(*safmin);
/*< RTMAX = ONE / RTMIN >*/
rtmax = 1. / rtmin;
/*< SAFMAX = ONE / SAFMIN >*/
safmax = 1. / *safmin;
/* Scale A */
/*< >*/
/* Computing MAX */
d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[a_dim1 + 2], abs(
d__2)), d__6 = (d__3 = a[(a_dim1 << 1) + 1], abs(d__3)) + (d__4 =
a[(a_dim1 << 1) + 2], abs(d__4)), d__5 = max(d__5,d__6);
anorm = max(d__5,*safmin);
/*< ASCALE = ONE / ANORM >*/
ascale = 1. / anorm;
/*< A11 = ASCALE*A( 1, 1 ) >*/
a11 = ascale * a[a_dim1 + 1];
/*< A21 = ASCALE*A( 2, 1 ) >*/
a21 = ascale * a[a_dim1 + 2];
/*< A12 = ASCALE*A( 1, 2 ) >*/
a12 = ascale * a[(a_dim1 << 1) + 1];
/*< A22 = ASCALE*A( 2, 2 ) >*/
a22 = ascale * a[(a_dim1 << 1) + 2];
/* Perturb B if necessary to insure non-singularity */
/*< B11 = B( 1, 1 ) >*/
b11 = b[b_dim1 + 1];
/*< B12 = B( 1, 2 ) >*/
b12 = b[(b_dim1 << 1) + 1];
/*< B22 = B( 2, 2 ) >*/
b22 = b[(b_dim1 << 1) + 2];
/*< BMIN = RTMIN*MAX( ABS( B11 ), ABS( B12 ), ABS( B22 ), RTMIN ) >*/
/* Computing MAX */
d__1 = abs(b11), d__2 = abs(b12), d__1 = max(d__1,d__2), d__2 = abs(b22),
d__1 = max(d__1,d__2);
bmin = rtmin * max(d__1,rtmin);
/*< >*/
if (abs(b11) < bmin) {
b11 = d_sign(&bmin, &b11);
}
/*< >*/
if (abs(b22) < bmin) {
b22 = d_sign(&bmin, &b22);
}
/* Scale B */
/*< BNORM = MAX( ABS( B11 ), ABS( B12 )+ABS( B22 ), SAFMIN ) >*/
/* Computing MAX */
d__1 = abs(b11), d__2 = abs(b12) + abs(b22), d__1 = max(d__1,d__2);
bnorm = max(d__1,*safmin);
/*< BSIZE = MAX( ABS( B11 ), ABS( B22 ) ) >*/
/* Computing MAX */
d__1 = abs(b11), d__2 = abs(b22);
bsize = max(d__1,d__2);
/*< BSCALE = ONE / BSIZE >*/
bscale = 1. / bsize;
/*< B11 = B11*BSCALE >*/
b11 *= bscale;
/*< B12 = B12*BSCALE >*/
b12 *= bscale;
/*< B22 = B22*BSCALE >*/
b22 *= bscale;
/* Compute larger eigenvalue by method described by C. van Loan */
/* ( AS is A shifted by -SHIFT*B ) */
/*< BINV11 = ONE / B11 >*/
binv11 = 1. / b11;
/*< BINV22 = ONE / B22 >*/
binv22 = 1. / b22;
/*< S1 = A11*BINV11 >*/
s1 = a11 * binv11;
/*< S2 = A22*BINV22 >*/
s2 = a22 * binv22;
/*< IF( ABS( S1 ).LE.ABS( S2 ) ) THEN >*/
if (abs(s1) <= abs(s2)) {
/*< AS12 = A12 - S1*B12 >*/
as12 = a12 - s1 * b12;
/*< AS22 = A22 - S1*B22 >*/
as22 = a22 - s1 * b22;
/*< SS = A21*( BINV11*BINV22 ) >*/
ss = a21 * (binv11 * binv22);
/*< ABI22 = AS22*BINV22 - SS*B12 >*/
abi22 = as22 * binv22 - ss * b12;
/*< PP = HALF*ABI22 >*/
pp = abi22 * .5;
/*< SHIFT = S1 >*/
shift = s1;
/*< ELSE >*/
} else {
/*< AS12 = A12 - S2*B12 >*/
as12 = a12 - s2 * b12;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -