📄 dspr.c
字号:
/* dspr.f -- translated by f2c (version 20060506).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE DSPR ( UPLO, N, ALPHA, X, INCX, AP ) >*/
/* Subroutine */ int dspr_(char *uplo, integer *n, doublereal *alpha,
doublereal *x, integer *incx, doublereal *ap, ftnlen uplo_len)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__, j, k, kk, ix, jx, kx=0, info;
doublereal temp;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
(void)uplo_len;
/* .. Scalar Arguments .. */
/*< DOUBLE PRECISION ALPHA >*/
/*< INTEGER INCX, N >*/
/*< CHARACTER*1 UPLO >*/
/* .. Array Arguments .. */
/*< DOUBLE PRECISION AP( * ), X( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DSPR performs the symmetric rank 1 operation */
/* A := alpha*x*x' + A, */
/* where alpha is a real scalar, x is an n element vector and A is an */
/* n by n symmetric matrix, supplied in packed form. */
/* Parameters */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the matrix A is supplied in the packed */
/* array AP as follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* supplied in AP. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* supplied in AP. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* ALPHA - DOUBLE PRECISION. */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* X - DOUBLE PRECISION array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* AP - DOUBLE PRECISION array of DIMENSION at least */
/* ( ( n*( n + 1 ) )/2 ). */
/* Before entry with UPLO = 'U' or 'u', the array AP must */
/* contain the upper triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
/* and a( 2, 2 ) respectively, and so on. On exit, the array */
/* AP is overwritten by the upper triangular part of the */
/* updated matrix. */
/* Before entry with UPLO = 'L' or 'l', the array AP must */
/* contain the lower triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
/* and a( 3, 1 ) respectively, and so on. On exit, the array */
/* AP is overwritten by the lower triangular part of the */
/* updated matrix. */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO >*/
/*< PARAMETER ( ZERO = 0.0D+0 ) >*/
/* .. Local Scalars .. */
/*< DOUBLE PRECISION TEMP >*/
/*< INTEGER I, INFO, IX, J, JX, K, KK, KX >*/
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/*< INFO = 0 >*/
/* Parameter adjustments */
--ap;
--x;
/* Function Body */
info = 0;
/*< >*/
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
ftnlen)1, (ftnlen)1)) {
/*< INFO = 1 >*/
info = 1;
/*< ELSE IF( N.LT.0 )THEN >*/
} else if (*n < 0) {
/*< INFO = 2 >*/
info = 2;
/*< ELSE IF( INCX.EQ.0 )THEN >*/
} else if (*incx == 0) {
/*< INFO = 5 >*/
info = 5;
/*< END IF >*/
}
/*< IF( INFO.NE.0 )THEN >*/
if (info != 0) {
/*< CALL XERBLA( 'DSPR ', INFO ) >*/
xerbla_("DSPR ", &info, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible. */
/*< >*/
if (*n == 0 || *alpha == 0.) {
return 0;
}
/* Set the start point in X if the increment is not unity. */
/*< IF( INCX.LE.0 )THEN >*/
if (*incx <= 0) {
/*< KX = 1 - ( N - 1 )*INCX >*/
kx = 1 - (*n - 1) * *incx;
/*< ELSE IF( INCX.NE.1 )THEN >*/
} else if (*incx != 1) {
/*< KX = 1 >*/
kx = 1;
/*< END IF >*/
}
/* Start the operations. In this version the elements of the array AP */
/* are accessed sequentially with one pass through AP. */
/*< KK = 1 >*/
kk = 1;
/*< IF( LSAME( UPLO, 'U' ) )THEN >*/
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form A when upper triangle is stored in AP. */
/*< IF( INCX.EQ.1 )THEN >*/
if (*incx == 1) {
/*< DO 20, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< IF( X( J ).NE.ZERO )THEN >*/
if (x[j] != 0.) {
/*< TEMP = ALPHA*X( J ) >*/
temp = *alpha * x[j];
/*< K = KK >*/
k = kk;
/*< DO 10, I = 1, J >*/
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< AP( K ) = AP( K ) + X( I )*TEMP >*/
ap[k] += x[i__] * temp;
/*< K = K + 1 >*/
++k;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< END IF >*/
}
/*< KK = KK + J >*/
kk += j;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< ELSE >*/
} else {
/*< JX = KX >*/
jx = kx;
/*< DO 40, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< IF( X( JX ).NE.ZERO )THEN >*/
if (x[jx] != 0.) {
/*< TEMP = ALPHA*X( JX ) >*/
temp = *alpha * x[jx];
/*< IX = KX >*/
ix = kx;
/*< DO 30, K = KK, KK + J - 1 >*/
i__2 = kk + j - 1;
for (k = kk; k <= i__2; ++k) {
/*< AP( K ) = AP( K ) + X( IX )*TEMP >*/
ap[k] += x[ix] * temp;
/*< IX = IX + INCX >*/
ix += *incx;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< END IF >*/
}
/*< JX = JX + INCX >*/
jx += *incx;
/*< KK = KK + J >*/
kk += j;
/*< 40 CONTINUE >*/
/* L40: */
}
/*< END IF >*/
}
/*< ELSE >*/
} else {
/* Form A when lower triangle is stored in AP. */
/*< IF( INCX.EQ.1 )THEN >*/
if (*incx == 1) {
/*< DO 60, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< IF( X( J ).NE.ZERO )THEN >*/
if (x[j] != 0.) {
/*< TEMP = ALPHA*X( J ) >*/
temp = *alpha * x[j];
/*< K = KK >*/
k = kk;
/*< DO 50, I = J, N >*/
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
/*< AP( K ) = AP( K ) + X( I )*TEMP >*/
ap[k] += x[i__] * temp;
/*< K = K + 1 >*/
++k;
/*< 50 CONTINUE >*/
/* L50: */
}
/*< END IF >*/
}
/*< KK = KK + N - J + 1 >*/
kk = kk + *n - j + 1;
/*< 60 CONTINUE >*/
/* L60: */
}
/*< ELSE >*/
} else {
/*< JX = KX >*/
jx = kx;
/*< DO 80, J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< IF( X( JX ).NE.ZERO )THEN >*/
if (x[jx] != 0.) {
/*< TEMP = ALPHA*X( JX ) >*/
temp = *alpha * x[jx];
/*< IX = JX >*/
ix = jx;
/*< DO 70, K = KK, KK + N - J >*/
i__2 = kk + *n - j;
for (k = kk; k <= i__2; ++k) {
/*< AP( K ) = AP( K ) + X( IX )*TEMP >*/
ap[k] += x[ix] * temp;
/*< IX = IX + INCX >*/
ix += *incx;
/*< 70 CONTINUE >*/
/* L70: */
}
/*< END IF >*/
}
/*< JX = JX + INCX >*/
jx += *incx;
/*< KK = KK + N - J + 1 >*/
kk = kk + *n - j + 1;
/*< 80 CONTINUE >*/
/* L80: */
}
/*< END IF >*/
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of DSPR . */
/*< END >*/
} /* dspr_ */
#ifdef __cplusplus
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -