📄 stgsja.c
字号:
/* lapack/single/stgsja.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static real c_b13 = (float)0.;
static real c_b14 = (float)1.;
static integer c__1 = 1;
static real c_b43 = (float)-1.;
/*< >*/
/* Subroutine */ int stgsja_(char *jobu, char *jobv, char *jobq, integer *m,
integer *p, integer *n, integer *k, integer *l, real *a, integer *lda,
real *b, integer *ldb, real *tola, real *tolb, real *alpha, real *
beta, real *u, integer *ldu, real *v, integer *ldv, real *q, integer *
ldq, real *work, integer *ncycle, integer *info, ftnlen jobu_len,
ftnlen jobv_len, ftnlen jobq_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
u_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4;
real r__1;
/* Local variables */
integer i__, j;
real a1, a2, a3, b1, b2, b3, csq, csu, csv, snq, rwk, snu, snv;
extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
integer *, real *, real *);
real gamma;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
logical initq, initu, initv, wantq, upper;
real error, ssmin;
logical wantu, wantv;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *), slags2_(logical *, real *, real *, real *, real *,
real *, real *, real *, real *, real *, real *, real *, real *);
integer kcycle;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slapll_(
integer *, real *, integer *, real *, integer *, real *), slartg_(
real *, real *, real *, real *, real *), slaset_(char *, integer *
, integer *, real *, real *, real *, integer *, ftnlen);
(void)jobu_len;
(void)jobv_len;
(void)jobq_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< CHARACTER JOBQ, JOBU, JOBV >*/
/*< >*/
/*< REAL TOLA, TOLB >*/
/* .. */
/* .. Array Arguments .. */
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* STGSJA computes the generalized singular value decomposition (GSVD) */
/* of two real upper triangular (or trapezoidal) matrices A and B. */
/* On entry, it is assumed that matrices A and B have the following */
/* forms, which may be obtained by the preprocessing subroutine SGGSVP */
/* from a general M-by-N matrix A and P-by-N matrix B: */
/* N-K-L K L */
/* A = K ( 0 A12 A13 ) if M-K-L >= 0; */
/* L ( 0 0 A23 ) */
/* M-K-L ( 0 0 0 ) */
/* N-K-L K L */
/* A = K ( 0 A12 A13 ) if M-K-L < 0; */
/* M-K ( 0 0 A23 ) */
/* N-K-L K L */
/* B = L ( 0 0 B13 ) */
/* P-L ( 0 0 0 ) */
/* where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
/* upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
/* otherwise A23 is (M-K)-by-L upper trapezoidal. */
/* On exit, */
/* U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ), */
/* where U, V and Q are orthogonal matrices, Z' denotes the transpose */
/* of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are */
/* ``diagonal'' matrices, which are of the following structures: */
/* If M-K-L >= 0, */
/* K L */
/* D1 = K ( I 0 ) */
/* L ( 0 C ) */
/* M-K-L ( 0 0 ) */
/* K L */
/* D2 = L ( 0 S ) */
/* P-L ( 0 0 ) */
/* N-K-L K L */
/* ( 0 R ) = K ( 0 R11 R12 ) K */
/* L ( 0 0 R22 ) L */
/* where */
/* C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
/* S = diag( BETA(K+1), ... , BETA(K+L) ), */
/* C**2 + S**2 = I. */
/* R is stored in A(1:K+L,N-K-L+1:N) on exit. */
/* If M-K-L < 0, */
/* K M-K K+L-M */
/* D1 = K ( I 0 0 ) */
/* M-K ( 0 C 0 ) */
/* K M-K K+L-M */
/* D2 = M-K ( 0 S 0 ) */
/* K+L-M ( 0 0 I ) */
/* P-L ( 0 0 0 ) */
/* N-K-L K M-K K+L-M */
/* ( 0 R ) = K ( 0 R11 R12 R13 ) */
/* M-K ( 0 0 R22 R23 ) */
/* K+L-M ( 0 0 0 R33 ) */
/* where */
/* C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
/* S = diag( BETA(K+1), ... , BETA(M) ), */
/* C**2 + S**2 = I. */
/* R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored */
/* ( 0 R22 R23 ) */
/* in B(M-K+1:L,N+M-K-L+1:N) on exit. */
/* The computation of the orthogonal transformation matrices U, V or Q */
/* is optional. These matrices may either be formed explicitly, or they */
/* may be postmultiplied into input matrices U1, V1, or Q1. */
/* Arguments */
/* ========= */
/* JOBU (input) CHARACTER*1 */
/* = 'U': U must contain an orthogonal matrix U1 on entry, and */
/* the product U1*U is returned; */
/* = 'I': U is initialized to the unit matrix, and the */
/* orthogonal matrix U is returned; */
/* = 'N': U is not computed. */
/* JOBV (input) CHARACTER*1 */
/* = 'V': V must contain an orthogonal matrix V1 on entry, and */
/* the product V1*V is returned; */
/* = 'I': V is initialized to the unit matrix, and the */
/* orthogonal matrix V is returned; */
/* = 'N': V is not computed. */
/* JOBQ (input) CHARACTER*1 */
/* = 'Q': Q must contain an orthogonal matrix Q1 on entry, and */
/* the product Q1*Q is returned; */
/* = 'I': Q is initialized to the unit matrix, and the */
/* orthogonal matrix Q is returned; */
/* = 'N': Q is not computed. */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* P (input) INTEGER */
/* The number of rows of the matrix B. P >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrices A and B. N >= 0. */
/* K (input) INTEGER */
/* L (input) INTEGER */
/* K and L specify the subblocks in the input matrices A and B: */
/* A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) */
/* of A and B, whose GSVD is going to be computed by STGSJA. */
/* See Further details. */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the M-by-N matrix A. */
/* On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular */
/* matrix R or part of R. See Purpose for details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* B (input/output) REAL array, dimension (LDB,N) */
/* On entry, the P-by-N matrix B. */
/* On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains */
/* a part of R. See Purpose for details. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,P). */
/* TOLA (input) REAL */
/* TOLB (input) REAL */
/* TOLA and TOLB are the convergence criteria for the Jacobi- */
/* Kogbetliantz iteration procedure. Generally, they are the */
/* same as used in the preprocessing step, say */
/* TOLA = max(M,N)*norm(A)*MACHEPS, */
/* TOLB = max(P,N)*norm(B)*MACHEPS. */
/* ALPHA (output) REAL array, dimension (N) */
/* BETA (output) REAL array, dimension (N) */
/* On exit, ALPHA and BETA contain the generalized singular */
/* value pairs of A and B; */
/* ALPHA(1:K) = 1, */
/* BETA(1:K) = 0, */
/* and if M-K-L >= 0, */
/* ALPHA(K+1:K+L) = diag(C), */
/* BETA(K+1:K+L) = diag(S), */
/* or if M-K-L < 0, */
/* ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 */
/* BETA(K+1:M) = S, BETA(M+1:K+L) = 1. */
/* Furthermore, if K+L < N, */
/* ALPHA(K+L+1:N) = 0 and */
/* BETA(K+L+1:N) = 0. */
/* U (input/output) REAL array, dimension (LDU,M) */
/* On entry, if JOBU = 'U', U must contain a matrix U1 (usually */
/* the orthogonal matrix returned by SGGSVP). */
/* On exit, */
/* if JOBU = 'I', U contains the orthogonal matrix U; */
/* if JOBU = 'U', U contains the product U1*U. */
/* If JOBU = 'N', U is not referenced. */
/* LDU (input) INTEGER */
/* The leading dimension of the array U. LDU >= max(1,M) if */
/* JOBU = 'U'; LDU >= 1 otherwise. */
/* V (input/output) REAL array, dimension (LDV,P) */
/* On entry, if JOBV = 'V', V must contain a matrix V1 (usually */
/* the orthogonal matrix returned by SGGSVP). */
/* On exit, */
/* if JOBV = 'I', V contains the orthogonal matrix V; */
/* if JOBV = 'V', V contains the product V1*V. */
/* If JOBV = 'N', V is not referenced. */
/* LDV (input) INTEGER */
/* The leading dimension of the array V. LDV >= max(1,P) if */
/* JOBV = 'V'; LDV >= 1 otherwise. */
/* Q (input/output) REAL array, dimension (LDQ,N) */
/* On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually */
/* the orthogonal matrix returned by SGGSVP). */
/* On exit, */
/* if JOBQ = 'I', Q contains the orthogonal matrix Q; */
/* if JOBQ = 'Q', Q contains the product Q1*Q. */
/* If JOBQ = 'N', Q is not referenced. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= max(1,N) if */
/* JOBQ = 'Q'; LDQ >= 1 otherwise. */
/* WORK (workspace) REAL array, dimension (2*N) */
/* NCYCLE (output) INTEGER */
/* The number of cycles required for convergence. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* = 1: the procedure does not converge after MAXIT cycles. */
/* Internal Parameters */
/* =================== */
/* MAXIT INTEGER */
/* MAXIT specifies the total loops that the iterative procedure */
/* may take. If after MAXIT cycles, the routine fails to */
/* converge, we return INFO = 1. */
/* Further Details */
/* =============== */
/* STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce */
/* min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L */
/* matrix B13 to the form: */
/* U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1, */
/* where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose */
/* of Z. C1 and S1 are diagonal matrices satisfying */
/* C1**2 + S1**2 = I, */
/* and R1 is an L-by-L nonsingular upper triangular matrix. */
/* ===================================================================== */
/* .. Parameters .. */
/*< INTEGER MAXIT >*/
/*< PARAMETER ( MAXIT = 40 ) >*/
/*< REAL ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV >*/
/*< INTEGER I, J, KCYCLE >*/
/*< >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. External Subroutines .. */
/*< >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, MAX, MIN >*/
/* .. */
/* .. Executable Statements .. */
/* Decode and test the input parameters */
/*< INITU = LSAME( JOBU, 'I' ) >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--alpha;
--beta;
u_dim1 = *ldu;
u_offset = 1 + u_dim1;
u -= u_offset;
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
--work;
/* Function Body */
initu = lsame_(jobu, "I", (ftnlen)1, (ftnlen)1);
/*< WANTU = INITU .OR. LSAME( JOBU, 'U' ) >*/
wantu = initu || lsame_(jobu, "U", (ftnlen)1, (ftnlen)1);
/*< INITV = LSAME( JOBV, 'I' ) >*/
initv = lsame_(jobv, "I", (ftnlen)1, (ftnlen)1);
/*< WANTV = INITV .OR. LSAME( JOBV, 'V' ) >*/
wantv = initv || lsame_(jobv, "V", (ftnlen)1, (ftnlen)1);
/*< INITQ = LSAME( JOBQ, 'I' ) >*/
initq = lsame_(jobq, "I", (ftnlen)1, (ftnlen)1);
/*< WANTQ = INITQ .OR. LSAME( JOBQ, 'Q' ) >*/
wantq = initq || lsame_(jobq, "Q", (ftnlen)1, (ftnlen)1);
/*< INFO = 0 >*/
*info = 0;
/*< IF( .NOT.( INITU .OR. WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN >*/
if (! (initu || wantu || lsame_(jobu, "N", (ftnlen)1, (ftnlen)1))) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( .NOT.( INITV .OR. WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN >*/
} else if (! (initv || wantv || lsame_(jobv, "N", (ftnlen)1, (ftnlen)1)))
{
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( .NOT.( INITQ .OR. WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN >*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -