📄 sorm2r.c
字号:
/* lapack/single/sorm2r.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int sorm2r_(char *side, char *trans, integer *m, integer *n,
integer *k, real *a, integer *lda, real *tau, real *c__, integer *ldc,
real *work, integer *info, ftnlen side_len, ftnlen trans_len)
{
/* System generated locals */
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
/* Local variables */
integer i__, i1, i2, i3, ic=0, jc=0, mi, ni, nq;
real aii;
logical left;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
integer *, real *, real *, integer *, real *, ftnlen), xerbla_(
char *, integer *, ftnlen);
logical notran;
(void)side_len;
(void)trans_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* February 29, 1992 */
/* .. Scalar Arguments .. */
/*< CHARACTER SIDE, TRANS >*/
/*< INTEGER INFO, K, LDA, LDC, M, N >*/
/* .. */
/* .. Array Arguments .. */
/*< REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* SORM2R overwrites the general real m by n matrix C with */
/* Q * C if SIDE = 'L' and TRANS = 'N', or */
/* Q'* C if SIDE = 'L' and TRANS = 'T', or */
/* C * Q if SIDE = 'R' and TRANS = 'N', or */
/* C * Q' if SIDE = 'R' and TRANS = 'T', */
/* where Q is a real orthogonal matrix defined as the product of k */
/* elementary reflectors */
/* Q = H(1) H(2) . . . H(k) */
/* as returned by SGEQRF. Q is of order m if SIDE = 'L' and of order n */
/* if SIDE = 'R'. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': apply Q or Q' from the Left */
/* = 'R': apply Q or Q' from the Right */
/* TRANS (input) CHARACTER*1 */
/* = 'N': apply Q (No transpose) */
/* = 'T': apply Q' (Transpose) */
/* M (input) INTEGER */
/* The number of rows of the matrix C. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. N >= 0. */
/* K (input) INTEGER */
/* The number of elementary reflectors whose product defines */
/* the matrix Q. */
/* If SIDE = 'L', M >= K >= 0; */
/* if SIDE = 'R', N >= K >= 0. */
/* A (input) REAL array, dimension (LDA,K) */
/* The i-th column must contain the vector which defines the */
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* SGEQRF in the first k columns of its array argument A. */
/* A is modified by the routine but restored on exit. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. */
/* If SIDE = 'L', LDA >= max(1,M); */
/* if SIDE = 'R', LDA >= max(1,N). */
/* TAU (input) REAL array, dimension (K) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by SGEQRF. */
/* C (input/output) REAL array, dimension (LDC,N) */
/* On entry, the m by n matrix C. */
/* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace) REAL array, dimension */
/* (N) if SIDE = 'L', */
/* (M) if SIDE = 'R' */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/*< REAL ONE >*/
/*< PARAMETER ( ONE = 1.0E+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL LEFT, NOTRAN >*/
/*< INTEGER I, I1, I2, I3, IC, JC, MI, NI, NQ >*/
/*< REAL AII >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL SLARF, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
/*< LEFT = LSAME( SIDE, 'L' ) >*/
left = lsame_(side, "L", (ftnlen)1, (ftnlen)1);
/*< NOTRAN = LSAME( TRANS, 'N' ) >*/
notran = lsame_(trans, "N", (ftnlen)1, (ftnlen)1);
/* NQ is the order of Q */
/*< IF( LEFT ) THEN >*/
if (left) {
/*< NQ = M >*/
nq = *m;
/*< ELSE >*/
} else {
/*< NQ = N >*/
nq = *n;
/*< END IF >*/
}
/*< IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN >*/
if (! left && ! lsame_(side, "R", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN >*/
} else if (! notran && ! lsame_(trans, "T", (ftnlen)1, (ftnlen)1)) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( M.LT.0 ) THEN >*/
} else if (*m < 0) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN >*/
} else if (*k < 0 || *k > nq) {
/*< INFO = -5 >*/
*info = -5;
/*< ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN >*/
} else if (*lda < max(1,nq)) {
/*< INFO = -7 >*/
*info = -7;
/*< ELSE IF( LDC.LT.MAX( 1, M ) ) THEN >*/
} else if (*ldc < max(1,*m)) {
/*< INFO = -10 >*/
*info = -10;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'SORM2R', -INFO ) >*/
i__1 = -(*info);
xerbla_("SORM2R", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< >*/
if (*m == 0 || *n == 0 || *k == 0) {
return 0;
}
/*< >*/
if ((left && ! notran) || (! left && notran)) {
/*< I1 = 1 >*/
i1 = 1;
/*< I2 = K >*/
i2 = *k;
/*< I3 = 1 >*/
i3 = 1;
/*< ELSE >*/
} else {
/*< I1 = K >*/
i1 = *k;
/*< I2 = 1 >*/
i2 = 1;
/*< I3 = -1 >*/
i3 = -1;
/*< END IF >*/
}
/*< IF( LEFT ) THEN >*/
if (left) {
/*< NI = N >*/
ni = *n;
/*< JC = 1 >*/
jc = 1;
/*< ELSE >*/
} else {
/*< MI = M >*/
mi = *m;
/*< IC = 1 >*/
ic = 1;
/*< END IF >*/
}
/*< DO 10 I = I1, I2, I3 >*/
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/*< IF( LEFT ) THEN >*/
if (left) {
/* H(i) is applied to C(i:m,1:n) */
/*< MI = M - I + 1 >*/
mi = *m - i__ + 1;
/*< IC = I >*/
ic = i__;
/*< ELSE >*/
} else {
/* H(i) is applied to C(1:m,i:n) */
/*< NI = N - I + 1 >*/
ni = *n - i__ + 1;
/*< JC = I >*/
jc = i__;
/*< END IF >*/
}
/* Apply H(i) */
/*< AII = A( I, I ) >*/
aii = a[i__ + i__ * a_dim1];
/*< A( I, I ) = ONE >*/
a[i__ + i__ * a_dim1] = (float)1.;
/*< >*/
slarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &tau[i__], &c__[
ic + jc * c_dim1], ldc, &work[1], (ftnlen)1);
/*< A( I, I ) = AII >*/
a[i__ + i__ * a_dim1] = aii;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< RETURN >*/
return 0;
/* End of SORM2R */
/*< END >*/
} /* sorm2r_ */
#ifdef __cplusplus
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -