📄 zlaset.c
字号:
/* lapack/complex16/zlaset.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE ZLASET( UPLO, M, N, ALPHA, BETA, A, LDA ) >*/
/* Subroutine */ int zlaset_(char *uplo, integer *m, integer *n,
doublecomplex *alpha, doublecomplex *beta, doublecomplex *a, integer *
lda, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, j;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
(void)uplo_len;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* October 31, 1992 */
/* .. Scalar Arguments .. */
/*< CHARACTER UPLO >*/
/*< INTEGER LDA, M, N >*/
/*< COMPLEX*16 ALPHA, BETA >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 A( LDA, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLASET initializes a 2-D array A to BETA on the diagonal and */
/* ALPHA on the offdiagonals. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies the part of the matrix A to be set. */
/* = 'U': Upper triangular part is set. The lower triangle */
/* is unchanged. */
/* = 'L': Lower triangular part is set. The upper triangle */
/* is unchanged. */
/* Otherwise: All of the matrix A is set. */
/* M (input) INTEGER */
/* On entry, M specifies the number of rows of A. */
/* N (input) INTEGER */
/* On entry, N specifies the number of columns of A. */
/* ALPHA (input) COMPLEX*16 */
/* All the offdiagonal array elements are set to ALPHA. */
/* BETA (input) COMPLEX*16 */
/* All the diagonal array elements are set to BETA. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the m by n matrix A. */
/* On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n, i.ne.j; */
/* A(i,i) = BETA , 1 <= i <= min(m,n) */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* ===================================================================== */
/* .. Local Scalars .. */
/*< INTEGER I, J >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MIN >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( LSAME( UPLO, 'U' ) ) THEN >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Set the diagonal to BETA and the strictly upper triangular */
/* part of the array to ALPHA. */
/*< DO 20 J = 2, N >*/
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
/*< DO 10 I = 1, MIN( J-1, M ) >*/
/* Computing MIN */
i__3 = j - 1;
i__2 = min(i__3,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ALPHA >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = alpha->r, a[i__3].i = alpha->i;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/*< DO 30 I = 1, MIN( N, M ) >*/
i__1 = min(*n,*m);
for (i__ = 1; i__ <= i__1; ++i__) {
/*< A( I, I ) = BETA >*/
i__2 = i__ + i__ * a_dim1;
a[i__2].r = beta->r, a[i__2].i = beta->i;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< ELSE IF( LSAME( UPLO, 'L' ) ) THEN >*/
} else if (lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
/* Set the diagonal to BETA and the strictly lower triangular */
/* part of the array to ALPHA. */
/*< DO 50 J = 1, MIN( M, N ) >*/
i__1 = min(*m,*n);
for (j = 1; j <= i__1; ++j) {
/*< DO 40 I = J + 1, M >*/
i__2 = *m;
for (i__ = j + 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ALPHA >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = alpha->r, a[i__3].i = alpha->i;
/*< 40 CONTINUE >*/
/* L40: */
}
/*< 50 CONTINUE >*/
/* L50: */
}
/*< DO 60 I = 1, MIN( N, M ) >*/
i__1 = min(*n,*m);
for (i__ = 1; i__ <= i__1; ++i__) {
/*< A( I, I ) = BETA >*/
i__2 = i__ + i__ * a_dim1;
a[i__2].r = beta->r, a[i__2].i = beta->i;
/*< 60 CONTINUE >*/
/* L60: */
}
/*< ELSE >*/
} else {
/* Set the array to BETA on the diagonal and ALPHA on the */
/* offdiagonal. */
/*< DO 80 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< DO 70 I = 1, M >*/
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ALPHA >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = alpha->r, a[i__3].i = alpha->i;
/*< 70 CONTINUE >*/
/* L70: */
}
/*< 80 CONTINUE >*/
/* L80: */
}
/*< DO 90 I = 1, MIN( M, N ) >*/
i__1 = min(*m,*n);
for (i__ = 1; i__ <= i__1; ++i__) {
/*< A( I, I ) = BETA >*/
i__2 = i__ + i__ * a_dim1;
a[i__2].r = beta->r, a[i__2].i = beta->i;
/*< 90 CONTINUE >*/
/* L90: */
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of ZLASET */
/*< END >*/
} /* zlaset_ */
#ifdef __cplusplus
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -