📄 ztrevc.c
字号:
/* lapack/complex16/ztrevc.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int ztrevc_(char *side, char *howmny, logical *select,
integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl,
integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer
*m, doublecomplex *work, doublereal *rwork, integer *info, ftnlen
side_len, ftnlen howmny_len)
{
/* System generated locals */
integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
i__2, i__3, i__4, i__5;
doublereal d__1, d__2, d__3;
doublecomplex z__1, z__2;
/* Builtin functions */
double d_imag(doublecomplex *);
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, k, ii, ki, is;
doublereal ulp;
logical allv;
doublereal unfl, ovfl, smin;
logical over;
doublereal scale;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
doublereal remax;
logical leftv, bothv;
extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *, ftnlen);
logical somev;
extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
extern doublereal dlamch_(char *, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
integer *, doublereal *, doublecomplex *, integer *);
extern integer izamax_(integer *, doublecomplex *, integer *);
logical rightv;
extern doublereal dzasum_(integer *, doublecomplex *, integer *);
doublereal smlnum;
extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublereal *, doublereal *, integer *, ftnlen, ftnlen, ftnlen,
ftnlen);
(void)side_len;
(void)howmny_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< CHARACTER HOWMNY, SIDE >*/
/*< INTEGER INFO, LDT, LDVL, LDVR, M, MM, N >*/
/* .. */
/* .. Array Arguments .. */
/*< LOGICAL SELECT( * ) >*/
/*< DOUBLE PRECISION RWORK( * ) >*/
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* ZTREVC computes some or all of the right and/or left eigenvectors of */
/* a complex upper triangular matrix T. */
/* The right eigenvector x and the left eigenvector y of T corresponding */
/* to an eigenvalue w are defined by: */
/* T*x = w*x, y'*T = w*y' */
/* where y' denotes the conjugate transpose of the vector y. */
/* If all eigenvectors are requested, the routine may either return the */
/* matrices X and/or Y of right or left eigenvectors of T, or the */
/* products Q*X and/or Q*Y, where Q is an input unitary */
/* matrix. If T was obtained from the Schur factorization of an */
/* original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of */
/* right or left eigenvectors of A. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'R': compute right eigenvectors only; */
/* = 'L': compute left eigenvectors only; */
/* = 'B': compute both right and left eigenvectors. */
/* HOWMNY (input) CHARACTER*1 */
/* = 'A': compute all right and/or left eigenvectors; */
/* = 'B': compute all right and/or left eigenvectors, */
/* and backtransform them using the input matrices */
/* supplied in VR and/or VL; */
/* = 'S': compute selected right and/or left eigenvectors, */
/* specified by the logical array SELECT. */
/* SELECT (input) LOGICAL array, dimension (N) */
/* If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
/* computed. */
/* If HOWMNY = 'A' or 'B', SELECT is not referenced. */
/* To select the eigenvector corresponding to the j-th */
/* eigenvalue, SELECT(j) must be set to .TRUE.. */
/* N (input) INTEGER */
/* The order of the matrix T. N >= 0. */
/* T (input/output) COMPLEX*16 array, dimension (LDT,N) */
/* The upper triangular matrix T. T is modified, but restored */
/* on exit. */
/* LDT (input) INTEGER */
/* The leading dimension of the array T. LDT >= max(1,N). */
/* VL (input/output) COMPLEX*16 array, dimension (LDVL,MM) */
/* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
/* contain an N-by-N matrix Q (usually the unitary matrix Q of */
/* Schur vectors returned by ZHSEQR). */
/* On exit, if SIDE = 'L' or 'B', VL contains: */
/* if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
/* VL is lower triangular. The i-th column */
/* VL(i) of VL is the eigenvector corresponding */
/* to T(i,i). */
/* if HOWMNY = 'B', the matrix Q*Y; */
/* if HOWMNY = 'S', the left eigenvectors of T specified by */
/* SELECT, stored consecutively in the columns */
/* of VL, in the same order as their */
/* eigenvalues. */
/* If SIDE = 'R', VL is not referenced. */
/* LDVL (input) INTEGER */
/* The leading dimension of the array VL. LDVL >= max(1,N) if */
/* SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
/* VR (input/output) COMPLEX*16 array, dimension (LDVR,MM) */
/* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
/* contain an N-by-N matrix Q (usually the unitary matrix Q of */
/* Schur vectors returned by ZHSEQR). */
/* On exit, if SIDE = 'R' or 'B', VR contains: */
/* if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
/* VR is upper triangular. The i-th column */
/* VR(i) of VR is the eigenvector corresponding */
/* to T(i,i). */
/* if HOWMNY = 'B', the matrix Q*X; */
/* if HOWMNY = 'S', the right eigenvectors of T specified by */
/* SELECT, stored consecutively in the columns */
/* of VR, in the same order as their */
/* eigenvalues. */
/* If SIDE = 'L', VR is not referenced. */
/* LDVR (input) INTEGER */
/* The leading dimension of the array VR. LDVR >= max(1,N) if */
/* SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
/* MM (input) INTEGER */
/* The number of columns in the arrays VL and/or VR. MM >= M. */
/* M (output) INTEGER */
/* The number of columns in the arrays VL and/or VR actually */
/* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */
/* is set to N. Each selected eigenvector occupies one */
/* column. */
/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The algorithm used in this program is basically backward (forward) */
/* substitution, with scaling to make the the code robust against */
/* possible overflow. */
/* Each eigenvector is normalized so that the element of largest */
/* magnitude has magnitude 1; here the magnitude of a complex number */
/* (x,y) is taken to be |x| + |y|. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO, ONE >*/
/*< PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/*< COMPLEX*16 CMZERO, CMONE >*/
/*< >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV >*/
/*< INTEGER I, II, IS, J, K, KI >*/
/*< DOUBLE PRECISION OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL >*/
/*< COMPLEX*16 CDUM >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< INTEGER IZAMAX >*/
/*< DOUBLE PRECISION DLAMCH, DZASUM >*/
/*< EXTERNAL LSAME, IZAMAX, DLAMCH, DZASUM >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX >*/
/* .. */
/* .. Statement Functions .. */
/*< DOUBLE PRECISION CABS1 >*/
/* .. */
/* .. Statement Function definitions .. */
/*< CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) >*/
/* .. */
/* .. Executable Statements .. */
/* Decode and test the input parameters */
/*< BOTHV = LSAME( SIDE, 'B' ) >*/
/* Parameter adjustments */
--select;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1;
vr -= vr_offset;
--work;
--rwork;
/* Function Body */
bothv = lsame_(side, "B", (ftnlen)1, (ftnlen)1);
/*< RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV >*/
rightv = lsame_(side, "R", (ftnlen)1, (ftnlen)1) || bothv;
/*< LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV >*/
leftv = lsame_(side, "L", (ftnlen)1, (ftnlen)1) || bothv;
/*< ALLV = LSAME( HOWMNY, 'A' ) >*/
allv = lsame_(howmny, "A", (ftnlen)1, (ftnlen)1);
/*< OVER = LSAME( HOWMNY, 'B' ) >*/
over = lsame_(howmny, "B", (ftnlen)1, (ftnlen)1);
/*< SOMEV = LSAME( HOWMNY, 'S' ) >*/
somev = lsame_(howmny, "S", (ftnlen)1, (ftnlen)1);
/* Set M to the number of columns required to store the selected */
/* eigenvectors. */
/*< IF( SOMEV ) THEN >*/
if (somev) {
/*< M = 0 >*/
*m = 0;
/*< DO 10 J = 1, N >*/
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/*< >*/
if (select[j]) {
++(*m);
}
/*< 10 CONTINUE >*/
/* L10: */
}
/*< ELSE >*/
} else {
/*< M = N >*/
*m = *n;
/*< END IF >*/
}
/*< INFO = 0 >*/
*info = 0;
/*< IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN >*/
if (! rightv && ! leftv) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN >*/
} else if (! allv && ! over && ! somev) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( LDT.LT.MAX( 1, N ) ) THEN >*/
} else if (*ldt < max(1,*n)) {
/*< INFO = -6 >*/
*info = -6;
/*< ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN >*/
} else if (*ldvl < 1 || (leftv && *ldvl < *n)) {
/*< INFO = -8 >*/
*info = -8;
/*< ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN >*/
} else if (*ldvr < 1 || (rightv && *ldvr < *n)) {
/*< INFO = -10 >*/
*info = -10;
/*< ELSE IF( MM.LT.M ) THEN >*/
} else if (*mm < *m) {
/*< INFO = -11 >*/
*info = -11;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZTREVC', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZTREVC", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible. */
/*< >*/
if (*n == 0) {
return 0;
}
/* Set the constants to control overflow. */
/*< UNFL = DLAMCH( 'Safe minimum' ) >*/
unfl = dlamch_("Safe minimum", (ftnlen)12);
/*< OVFL = ONE / UNFL >*/
ovfl = 1. / unfl;
/*< CALL DLABAD( UNFL, OVFL ) >*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -