⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgebal.c

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 C
📖 第 1 页 / 共 2 页
字号:
/* lapack/complex16/zgebal.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;

/*<       SUBROUTINE ZGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO ) >*/
/* Subroutine */ int zgebal_(char *job, integer *n, doublecomplex *a, integer 
        *lda, integer *ilo, integer *ihi, doublereal *scale, integer *info, 
        ftnlen job_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double d_imag(doublecomplex *), z_abs(doublecomplex *);

    /* Local variables */
    doublereal c__, f, g;
    integer i__, j, k, l, m;
    doublereal r__, s, ca, ra;
    integer ica, ira, iexc;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, 
            doublecomplex *, integer *);
    doublereal sfmin1, sfmin2, sfmax1, sfmax2;
    extern doublereal dlamch_(char *, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
            integer *, doublereal *, doublecomplex *, integer *);
    extern integer izamax_(integer *, doublecomplex *, integer *);
    logical noconv;
    (void)job_len;

/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          JOB >*/
/*<       INTEGER            IHI, ILO, INFO, LDA, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       DOUBLE PRECISION   SCALE( * ) >*/
/*<       COMPLEX*16         A( LDA, * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGEBAL balances a general complex matrix A.  This involves, first, */
/*  permuting A by a similarity transformation to isolate eigenvalues */
/*  in the first 1 to ILO-1 and last IHI+1 to N elements on the */
/*  diagonal; and second, applying a diagonal similarity transformation */
/*  to rows and columns ILO to IHI to make the rows and columns as */
/*  close in norm as possible.  Both steps are optional. */

/*  Balancing may reduce the 1-norm of the matrix, and improve the */
/*  accuracy of the computed eigenvalues and/or eigenvectors. */

/*  Arguments */
/*  ========= */

/*  JOB     (input) CHARACTER*1 */
/*          Specifies the operations to be performed on A: */
/*          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0 */
/*                  for i = 1,...,N; */
/*          = 'P':  permute only; */
/*          = 'S':  scale only; */
/*          = 'B':  both permute and scale. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the input matrix A. */
/*          On exit,  A is overwritten by the balanced matrix. */
/*          If JOB = 'N', A is not referenced. */
/*          See Further Details. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  ILO     (output) INTEGER */
/*  IHI     (output) INTEGER */
/*          ILO and IHI are set to integers such that on exit */
/*          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. */
/*          If JOB = 'N' or 'S', ILO = 1 and IHI = N. */

/*  SCALE   (output) DOUBLE PRECISION array, dimension (N) */
/*          Details of the permutations and scaling factors applied to */
/*          A.  If P(j) is the index of the row and column interchanged */
/*          with row and column j and D(j) is the scaling factor */
/*          applied to row and column j, then */
/*          SCALE(j) = P(j)    for j = 1,...,ILO-1 */
/*                   = D(j)    for j = ILO,...,IHI */
/*                   = P(j)    for j = IHI+1,...,N. */
/*          The order in which the interchanges are made is N to IHI+1, */
/*          then 1 to ILO-1. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  The permutations consist of row and column interchanges which put */
/*  the matrix in the form */

/*             ( T1   X   Y  ) */
/*     P A P = (  0   B   Z  ) */
/*             (  0   0   T2 ) */

/*  where T1 and T2 are upper triangular matrices whose eigenvalues lie */
/*  along the diagonal.  The column indices ILO and IHI mark the starting */
/*  and ending columns of the submatrix B. Balancing consists of applying */
/*  a diagonal similarity transformation inv(D) * B * D to make the */
/*  1-norms of each row of B and its corresponding column nearly equal. */
/*  The output matrix is */

/*     ( T1     X*D          Y    ) */
/*     (  0  inv(D)*B*D  inv(D)*Z ). */
/*     (  0      0           T2   ) */

/*  Information about the permutations P and the diagonal matrix D is */
/*  returned in the vector SCALE. */

/*  This subroutine is based on the EISPACK routine CBAL. */

/*  Modified by Tzu-Yi Chen, Computer Science Division, University of */
/*    California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ZERO, ONE >*/
/*<       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 ) >*/
/*<       DOUBLE PRECISION   SCLFAC >*/
/*<       PARAMETER          ( SCLFAC = 0.8D+1 ) >*/
/*<       DOUBLE PRECISION   FACTOR >*/
/*<       PARAMETER          ( FACTOR = 0.95D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       LOGICAL            NOCONV >*/
/*<       INTEGER            I, ICA, IEXC, IRA, J, K, L, M >*/
/*<    >*/
/*<       COMPLEX*16         CDUM >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       INTEGER            IZAMAX >*/
/*<       DOUBLE PRECISION   DLAMCH >*/
/*<       EXTERNAL           LSAME, IZAMAX, DLAMCH >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           XERBLA, ZDSCAL, ZSWAP >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN >*/
/*     .. */
/*     .. Statement Functions .. */
/*<       DOUBLE PRECISION   CABS1 >*/
/*     .. */
/*     .. Statement Function definitions .. */
/*<       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --scale;

    /* Function Body */
    *info = 0;
/*<    >*/
    if (! lsame_(job, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(job, "P", (
            ftnlen)1, (ftnlen)1) && ! lsame_(job, "S", (ftnlen)1, (ftnlen)1) 
            && ! lsame_(job, "B", (ftnlen)1, (ftnlen)1)) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( N.LT.0 ) THEN >*/
    } else if (*n < 0) {
/*<          INFO = -2 >*/
        *info = -2;
/*<       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
    } else if (*lda < max(1,*n)) {
/*<          INFO = -4 >*/
        *info = -4;
/*<       END IF >*/
    }
/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'ZGEBAL', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("ZGEBAL", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*<       K = 1 >*/
    k = 1;
/*<       L = N >*/
    l = *n;

/*<    >*/
    if (*n == 0) {
        goto L210;
    }

/*<       IF( LSAME( JOB, 'N' ) ) THEN >*/
    if (lsame_(job, "N", (ftnlen)1, (ftnlen)1)) {
/*<          DO 10 I = 1, N >*/
        i__1 = *n;
        for (i__ = 1; i__ <= i__1; ++i__) {
/*<             SCALE( I ) = ONE >*/
            scale[i__] = 1.;
/*<    10    CONTINUE >*/
/* L10: */
        }
/*<          GO TO 210 >*/
        goto L210;
/*<       END IF >*/
    }

/*<    >*/
    if (lsame_(job, "S", (ftnlen)1, (ftnlen)1)) {
        goto L120;
    }

/*     Permutation to isolate eigenvalues if possible */

/*<       GO TO 50 >*/
    goto L50;

/*     Row and column exchange. */

/*<    20 CONTINUE >*/
L20:
/*<       SCALE( M ) = J >*/
    scale[m] = (doublereal) j;
/*<    >*/
    if (j == m) {
        goto L30;
    }

/*<       CALL ZSWAP( L, A( 1, J ), 1, A( 1, M ), 1 ) >*/
    zswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
/*<       CALL ZSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA ) >*/
    i__1 = *n - k + 1;
    zswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);

/*<    30 CONTINUE >*/
L30:
/*<       GO TO ( 40, 80 )IEXC >*/
    switch (iexc) {
        case 1:  goto L40;
        case 2:  goto L80;
    }

/*     Search for rows isolating an eigenvalue and push them down. */

/*<    40 CONTINUE >*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -