📄 zlarfb.c
字号:
/* lapack/complex16/zlarfb.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int zlarfb_(char *side, char *trans, char *direct, char *
storev, integer *m, integer *n, integer *k, doublecomplex *v, integer
*ldv, doublecomplex *t, integer *ldt, doublecomplex *c__, integer *
ldc, doublecomplex *work, integer *ldwork, ftnlen side_len, ftnlen
trans_len, ftnlen direct_len, ftnlen storev_len)
{
/* System generated locals */
integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
work_offset, i__1, i__2, i__3, i__4, i__5;
doublecomplex z__1, z__2;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, ftnlen, ftnlen), zcopy_(integer *, doublecomplex *,
integer *, doublecomplex *, integer *), ztrmm_(char *, char *,
char *, char *, integer *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *, ftnlen,
ftnlen, ftnlen, ftnlen), zlacgv_(integer *, doublecomplex *,
integer *);
char transt[1];
(void)side_len;
(void)trans_len;
(void)direct_len;
(void)storev_len;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* .. Scalar Arguments .. */
/*< CHARACTER DIRECT, SIDE, STOREV, TRANS >*/
/*< INTEGER K, LDC, LDT, LDV, LDWORK, M, N >*/
/* .. */
/* .. Array Arguments .. */
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* ZLARFB applies a complex block reflector H or its transpose H' to a */
/* complex M-by-N matrix C, from either the left or the right. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': apply H or H' from the Left */
/* = 'R': apply H or H' from the Right */
/* TRANS (input) CHARACTER*1 */
/* = 'N': apply H (No transpose) */
/* = 'C': apply H' (Conjugate transpose) */
/* DIRECT (input) CHARACTER*1 */
/* Indicates how H is formed from a product of elementary */
/* reflectors */
/* = 'F': H = H(1) H(2) . . . H(k) (Forward) */
/* = 'B': H = H(k) . . . H(2) H(1) (Backward) */
/* STOREV (input) CHARACTER*1 */
/* Indicates how the vectors which define the elementary */
/* reflectors are stored: */
/* = 'C': Columnwise */
/* = 'R': Rowwise */
/* M (input) INTEGER */
/* The number of rows of the matrix C. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. */
/* K (input) INTEGER */
/* The order of the matrix T (= the number of elementary */
/* reflectors whose product defines the block reflector). */
/* V (input) COMPLEX*16 array, dimension */
/* (LDV,K) if STOREV = 'C' */
/* (LDV,M) if STOREV = 'R' and SIDE = 'L' */
/* (LDV,N) if STOREV = 'R' and SIDE = 'R' */
/* The matrix V. See further details. */
/* LDV (input) INTEGER */
/* The leading dimension of the array V. */
/* If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); */
/* if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); */
/* if STOREV = 'R', LDV >= K. */
/* T (input) COMPLEX*16 array, dimension (LDT,K) */
/* The triangular K-by-K matrix T in the representation of the */
/* block reflector. */
/* LDT (input) INTEGER */
/* The leading dimension of the array T. LDT >= K. */
/* C (input/output) COMPLEX*16 array, dimension (LDC,N) */
/* On entry, the M-by-N matrix C. */
/* On exit, C is overwritten by H*C or H'*C or C*H or C*H'. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace) COMPLEX*16 array, dimension (LDWORK,K) */
/* LDWORK (input) INTEGER */
/* The leading dimension of the array WORK. */
/* If SIDE = 'L', LDWORK >= max(1,N); */
/* if SIDE = 'R', LDWORK >= max(1,M). */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 ONE >*/
/*< PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) >*/
/* .. */
/* .. Local Scalars .. */
/*< CHARACTER TRANST >*/
/*< INTEGER I, J >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL ZCOPY, ZGEMM, ZLACGV, ZTRMM >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC DCONJG >*/
/* .. */
/* .. Executable Statements .. */
/* Quick return if possible */
/*< >*/
/* Parameter adjustments */
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
work_dim1 = *ldwork;
work_offset = 1 + work_dim1;
work -= work_offset;
/* Function Body */
if (*m <= 0 || *n <= 0) {
return 0;
}
/*< IF( LSAME( TRANS, 'N' ) ) THEN >*/
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
/*< TRANST = 'C' >*/
*(unsigned char *)transt = 'C';
/*< ELSE >*/
} else {
/*< TRANST = 'N' >*/
*(unsigned char *)transt = 'N';
/*< END IF >*/
}
/*< IF( LSAME( STOREV, 'C' ) ) THEN >*/
if (lsame_(storev, "C", (ftnlen)1, (ftnlen)1)) {
/*< IF( LSAME( DIRECT, 'F' ) ) THEN >*/
if (lsame_(direct, "F", (ftnlen)1, (ftnlen)1)) {
/* Let V = ( V1 ) (first K rows) */
/* ( V2 ) */
/* where V1 is unit lower triangular. */
/*< IF( LSAME( SIDE, 'L' ) ) THEN >*/
if (lsame_(side, "L", (ftnlen)1, (ftnlen)1)) {
/* Form H * C or H' * C where C = ( C1 ) */
/* ( C2 ) */
/* W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK) */
/* W := C1' */
/*< DO 10 J = 1, K >*/
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
/*< CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 ) >*/
zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
&c__1);
/*< CALL ZLACGV( N, WORK( 1, J ), 1 ) >*/
zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
/*< 10 CONTINUE >*/
/* L10: */
}
/* W := W * V1 */
/*< >*/
ztrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b1,
&v[v_offset], ldv, &work[work_offset], ldwork, (
ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4);
/*< IF( M.GT.K ) THEN >*/
if (*m > *k) {
/* W := W + C2'*V2 */
/*< >*/
i__1 = *m - *k;
zgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
&c_b1, &c__[*k + 1 + c_dim1], ldc, &v[*k + 1 +
v_dim1], ldv, &c_b1, &work[work_offset], ldwork, (
ftnlen)19, (ftnlen)12);
/*< END IF >*/
}
/* W := W * T' or W * T */
/*< >*/
ztrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b1, &t[
t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5,
(ftnlen)5, (ftnlen)1, (ftnlen)8);
/* C := C - V * W' */
/*< IF( M.GT.K ) THEN >*/
if (*m > *k) {
/* C2 := C2 - V2 * W' */
/*< >*/
i__1 = *m - *k;
z__1.r = -1., z__1.i = -0.;
zgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
&z__1, &v[*k + 1 + v_dim1], ldv, &work[
work_offset], ldwork, &c_b1, &c__[*k + 1 + c_dim1]
, ldc, (ftnlen)12, (ftnlen)19);
/*< END IF >*/
}
/* W := W * V1' */
/*< >*/
ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k,
&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork,
(ftnlen)5, (ftnlen)5, (ftnlen)19, (ftnlen)4);
/* C1 := C1 - W' */
/*< DO 30 J = 1, K >*/
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
/*< DO 20 I = 1, N >*/
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) ) >*/
i__3 = j + i__ * c_dim1;
i__4 = j + i__ * c_dim1;
d_cnjg(&z__2, &work[i__ + j * work_dim1]);
z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
z__2.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< 30 CONTINUE >*/
/* L30: */
}
/*< ELSE IF( LSAME( SIDE, 'R' ) ) THEN >*/
} else if (lsame_(side, "R", (ftnlen)1, (ftnlen)1)) {
/* Form C * H or C * H' where C = ( C1 C2 ) */
/* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
/* W := C1 */
/*< DO 40 J = 1, K >*/
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
/*< CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 ) >*/
zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
work_dim1 + 1], &c__1);
/*< 40 CONTINUE >*/
/* L40: */
}
/* W := W * V1 */
/*< >*/
ztrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b1,
&v[v_offset], ldv, &work[work_offset], ldwork, (
ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4);
/*< IF( N.GT.K ) THEN >*/
if (*n > *k) {
/* W := W + C2 * V2 */
/*< >*/
i__1 = *n - *k;
zgemm_("No transpose", "No transpose", m, k, &i__1, &c_b1,
&c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + 1 +
v_dim1], ldv, &c_b1, &work[work_offset], ldwork, (
ftnlen)12, (ftnlen)12);
/*< END IF >*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -