📄 zunghr.c
字号:
/* lapack/complex16/zunghr.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
/*< SUBROUTINE ZUNGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) >*/
/* Subroutine */ int zunghr_(integer *n, integer *ilo, integer *ihi,
doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j, nb, nh, iinfo;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer lwkopt=0;
logical lquery;
extern /* Subroutine */ int zungqr_(integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, integer *);
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< INTEGER IHI, ILO, INFO, LDA, LWORK, N >*/
/* .. */
/* .. Array Arguments .. */
/*< COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* ZUNGHR generates a complex unitary matrix Q which is defined as the */
/* product of IHI-ILO elementary reflectors of order N, as returned by */
/* ZGEHRD: */
/* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix Q. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* ILO and IHI must have the same values as in the previous call */
/* of ZGEHRD. Q is equal to the unit matrix except in the */
/* submatrix Q(ilo+1:ihi,ilo+1:ihi). */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the vectors which define the elementary reflectors, */
/* as returned by ZGEHRD. */
/* On exit, the N-by-N unitary matrix Q. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* TAU (input) COMPLEX*16 array, dimension (N-1) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by ZGEHRD. */
/* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= IHI-ILO. */
/* For optimum performance LWORK >= (IHI-ILO)*NB, where NB is */
/* the optimal blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/*< COMPLEX*16 ZERO, ONE >*/
/*< >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL LQUERY >*/
/*< INTEGER I, IINFO, J, LWKOPT, NB, NH >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL XERBLA, ZUNGQR >*/
/* .. */
/* .. External Functions .. */
/*< INTEGER ILAENV >*/
/*< EXTERNAL ILAENV >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX, MIN >*/
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/*< INFO = 0 >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
/*< NH = IHI - ILO >*/
nh = *ihi - *ilo;
/*< LQUERY = ( LWORK.EQ.-1 ) >*/
lquery = *lwork == -1;
/*< IF( N.LT.0 ) THEN >*/
if (*n < 0) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN >*/
} else if (*ilo < 1 || *ilo > max(1,*n)) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN >*/
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -5 >*/
*info = -5;
/*< ELSE IF( LWORK.LT.MAX( 1, NH ) .AND. .NOT.LQUERY ) THEN >*/
} else if (*lwork < max(1,nh) && ! lquery) {
/*< INFO = -8 >*/
*info = -8;
/*< END IF >*/
}
/*< IF( INFO.EQ.0 ) THEN >*/
if (*info == 0) {
/*< NB = ILAENV( 1, 'ZUNGQR', ' ', NH, NH, NH, -1 ) >*/
nb = ilaenv_(&c__1, "ZUNGQR", " ", &nh, &nh, &nh, &c_n1, (ftnlen)6, (
ftnlen)1);
/*< LWKOPT = MAX( 1, NH )*NB >*/
lwkopt = max(1,nh) * nb;
/*< WORK( 1 ) = LWKOPT >*/
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'ZUNGHR', -INFO ) >*/
i__1 = -(*info);
xerbla_("ZUNGHR", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< ELSE IF( LQUERY ) THEN >*/
} else if (lquery) {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Quick return if possible */
/*< IF( N.EQ.0 ) THEN >*/
if (*n == 0) {
/*< WORK( 1 ) = 1 >*/
work[1].r = 1., work[1].i = 0.;
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Shift the vectors which define the elementary reflectors one */
/* column to the right, and set the first ilo and the last n-ihi */
/* rows and columns to those of the unit matrix */
/*< DO 40 J = IHI, ILO + 1, -1 >*/
i__1 = *ilo + 1;
for (j = *ihi; j >= i__1; --j) {
/*< DO 10 I = 1, J - 1 >*/
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ZERO >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< DO 20 I = J + 1, IHI >*/
i__2 = *ihi;
for (i__ = j + 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = A( I, J-1 ) >*/
i__3 = i__ + j * a_dim1;
i__4 = i__ + (j - 1) * a_dim1;
a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< DO 30 I = IHI + 1, N >*/
i__2 = *n;
for (i__ = *ihi + 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ZERO >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
/*< 30 CONTINUE >*/
/* L30: */
}
/*< 40 CONTINUE >*/
/* L40: */
}
/*< DO 60 J = 1, ILO >*/
i__1 = *ilo;
for (j = 1; j <= i__1; ++j) {
/*< DO 50 I = 1, N >*/
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ZERO >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
/*< 50 CONTINUE >*/
/* L50: */
}
/*< A( J, J ) = ONE >*/
i__2 = j + j * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
/*< 60 CONTINUE >*/
/* L60: */
}
/*< DO 80 J = IHI + 1, N >*/
i__1 = *n;
for (j = *ihi + 1; j <= i__1; ++j) {
/*< DO 70 I = 1, N >*/
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< A( I, J ) = ZERO >*/
i__3 = i__ + j * a_dim1;
a[i__3].r = 0., a[i__3].i = 0.;
/*< 70 CONTINUE >*/
/* L70: */
}
/*< A( J, J ) = ONE >*/
i__2 = j + j * a_dim1;
a[i__2].r = 1., a[i__2].i = 0.;
/*< 80 CONTINUE >*/
/* L80: */
}
/*< IF( NH.GT.0 ) THEN >*/
if (nh > 0) {
/* Generate Q(ilo+1:ihi,ilo+1:ihi) */
/*< >*/
zungqr_(&nh, &nh, &nh, &a[*ilo + 1 + (*ilo + 1) * a_dim1], lda, &tau[*
ilo], &work[1], lwork, &iinfo);
/*< END IF >*/
}
/*< WORK( 1 ) = LWKOPT >*/
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
/*< RETURN >*/
return 0;
/* End of ZUNGHR */
/*< END >*/
} /* zunghr_ */
#ifdef __cplusplus
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -