📄 vnl_least_squares_function.cxx
字号:
// This is core/vnl/vnl_least_squares_function.cxx
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma implementation
#endif
//:
// \file
// \author Andrew W. Fitzgibbon, Oxford RRG
// \date 31 Aug 96
#include "vnl_least_squares_function.h"
#include <vcl_iostream.h>
#include <vcl_cassert.h>
void vnl_least_squares_function::dim_warning(unsigned int number_of_unknowns,
unsigned int number_of_residuals)
{
if (number_of_unknowns > number_of_residuals)
vcl_cerr << "vnl_least_squares_function: WARNING: "
<< "unknowns(" << number_of_unknowns << ") > "
<< "residuals("<< number_of_residuals << ")\n";
}
void vnl_least_squares_function::gradf(vnl_vector<double> const& /*x*/,
vnl_matrix<double>& /*jacobian*/)
{
vcl_cerr << "Warning: gradf() called but not implemented in derived class\n";
}
//: Compute fd gradient
void vnl_least_squares_function::fdgradf(vnl_vector<double> const& x,
vnl_matrix<double>& jacobian,
double stepsize)
{
unsigned int dim = x.size();
unsigned int n = jacobian.rows();
assert(dim == get_number_of_unknowns());
assert(n == get_number_of_residuals());
assert(dim == jacobian.columns());
vnl_vector<double> tx = x;
vnl_vector<double> fplus(n);
vnl_vector<double> fminus(n);
for (unsigned int i = 0; i < dim; ++i)
{
// calculate f just to the right of x[i]
double tplus = tx[i] = x[i] + stepsize;
this->f(tx, fplus);
// calculate f just to the left of x[i]
double tminus = tx[i] = x[i] - stepsize;
this->f(tx, fminus);
double h = 1.0 / (tplus - tminus);
for (unsigned int j = 0; j < n; ++j)
jacobian(j,i) = (fplus[j] - fminus[j]) * h;
// restore tx
tx[i] = x[i];
}
}
void vnl_least_squares_function::trace(int /* iteration */,
vnl_vector<double> const& /*x*/,
vnl_vector<double> const& /*fx*/)
{
// This default implementation is empty; overloaded in derived class.
}
double vnl_least_squares_function::rms(vnl_vector<double> const& x)
{
vnl_vector<double> fx(n_);
f(x, fx);
return fx.rms();
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -