📄 term3.c
字号:
j=j%256;
CK1=j/16;
CK2=j%16;
if (CK1>9) CK1=CK1+55;
else CK1=CK1+48;
CCF1=1;
TDR=CK1;
while(!STI);
STI=0;
if (CK2>9) CK2=CK2+55;
else CK2=CK2+48;
CCF1=1;
TDR=CK2;
while(!STI);
STI=0;
CCF1=1; //SEND CR
TDR=13;
while(!STI);
STI=0;
CCF1=1;//SEND LF
TDR=10;
while(!STI);
STI=0;
}
void Send_Term(void)
{
unsigned char i;
unsigned char CK1;
unsigned char CK2;
short int j=0,m,n;
STI=0;
//--------------------
//数据侦头
j=j+'S';
CCF1=1;
TDR='S';
while(!STI);
STI=0;
j=j+'J';
CCF1=1;
TDR='J';
while(!STI);
STI=0;
j=j+'-';
CCF1=1;
TDR='-';
while(!STI);
STI=0;
j=j+'T';
CCF1=1;
TDR='T';
while(!STI);
STI=0;
j=j+'e';
CCF1=1;
TDR='e';
while(!STI);
STI=0;
j=j+'r';
CCF1=1;
TDR='r';
while(!STI);
STI=0;
j=j+'m';
CCF1=1;
TDR='m';
while(!STI);
STI=0;
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//反馈终端的地址--方案1
m = ADDRESS /10000+48;
n = ADDRESS %10000;
j=j+m;
CCF1=1;
TDR=m;
while(!STI);
STI=0;
m = n /1000+48;
n = n %1000;
j=j+m+48;
CCF1=1;
TDR=m;
while(!STI);
STI=0;
m = n /100+48;
n = n %100;
j=j+m;
CCF1=1;
TDR=m;
while(!STI);
STI=0;
m = n /10+48;
n = n %10+48;
j=j+m;
CCF1=1;
TDR=m;
while(!STI);
STI=0;
j=j+n;
CCF1=1;
TDR=n;
while(!STI);
STI=0;
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
/*反馈终端的地址--方案2
j=j+ADDRESS;
CCF1=1;
TDR=m;
while(!STI);
STI=0;
j=j+ADDRESS>>8;
CCF1=1;
TDR=m>>8;
while(!STI);
STI=0;
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//命令
j=j+'1';
CCF1=1;
TDR='1';
while(!STI);
STI=0;
j=j+'E';
CCF1=1;
TDR='E';
while(!STI);
STI=0;
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//发送年月日
/*
for (i=0;i<6;i++) //send UTC time
{
j=j+SW_Date[i];
CCF1=1;
TDR=SW_Date[i];
while(!STI);
STI=0;
}
*/
for (i=0;i<6;i++) //send UTC time
{
j=j+UTCtime[i];
CCF1=1;
TDR=UTCtime[i];
while(!STI);
STI=0;
}
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//发送纬度
for (i=0;i<9;i++) //send Longitude
{
j=j+Longitude[i];
CCF1=1;
TDR=Longitude[i];
while(!STI);
STI=0;
}
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//发送经度
for (i=0;i<10;i++) //send Latitude
{
j=j+Latitude[i];
CCF1=1;
TDR=Latitude[i];
while(!STI);
STI=0;
}
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//发送DGPS
j=j+DGPS;
CCF1=1; //snd DGPS
TDR=DGPS;
while(!STI);
STI=0;
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//发送接收卫星颗数
for(i=0;i<2;i++)
{
j=j+weixing[i];
CCF1=1;
TDR=weixing[i];
while(!STI);
STI=0;
}
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//发送信号强度
for (i=0;i<4;i++) //send HDOP
{
j=j+HDOP[i];
CCF1=1;
TDR=HDOP[i];
while(!STI);
STI=0;
}
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//发送电池状态
j=j+Batt_State+0x30;
CCF1=1;
TDR=Batt_State+0x30;
while(!STI);
STI=0;
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
//--------------------*/
//发送GPS天线状态
for (i=0;i<2;i++)
{
j=j+GPS_Alarm[i];
CCF1=1;
TDR=GPS_Alarm[i];
while(!STI);
STI=0;
}
j=j+',';
CCF1=1;
TDR=',';
while(!STI);
STI=0;
CCF1=1;
TDR='*';
while(!STI);
STI=0;
j=j%256;
CK1=j/16;
CK2=j%16;
if (CK1>9)
CK1=CK1+55;
else
CK1=CK1+48;
CCF1=1;
TDR=CK1;
while(!STI);
STI=0;
if (CK2>9)
CK2=CK2+55;
else
CK2=CK2+48;
CCF1=1;
TDR=CK2;
while(!STI);
STI=0;
CCF1=1; //SEND CR
TDR=13;
while(!STI);
STI=0;
CCF1=1;//SEND LF
TDR=10;
while(!STI);
STI=0;
}
void Delay_1uS(unsigned int j)
{
unsigned char i;
do{
for(i=0;i<200;i++);
}while(--j);
}
void Variable_Init(void)
{
RecvByte=0;
LcdBackLight_Delay_AfterS2410=0;
key_press_time=0;
key_zt=0;key_time=0;
riqi[0]=0+0x30;
riqi[1]=6+0x30;
riqi[2]=0+0x30;
riqi[3]=7+0x30;
riqi[4]=1+0x30;
riqi[5]=8+0x30;
GPS_Alarm[0]=8+0x30;
GPS_Alarm[1]=5+0x30;
GPS_SW = 0;
weixing[0]=0+0x30;
weixing[1]=0+0x30;
GPS_Current_pre=0;
GPS_Current=0;
GPS_time=0;
GPS_Alarm_js=0;
Batt_State = 9+0x30;
for (ii=0;ii<9;ii++) // Longitude
{
Longitude[ii]=0x30;
}
for (ii=0;ii<10;ii++) // Latitude
{
Latitude[ii]=0x30;
}
DGPS=0x30;
for (ii=0;ii<4;ii++) // HDOP
{
HDOP[ii]=0x30;
}
SW_RecvByte = 0;
for(ii=0;ii<7;ii++)
SW_Header[ii] = 0;
SW_Recv_Command = 0;
for(ii=0;ii<5;ii++)
SW_Address[ii] = 0;
SW_FrameLength = 0;
SW_IsFrame = 0;
SW_RecvOver = 0;
SRI=0;
surt_js=0;
b_light=0x30;
}
//----------------------------------------------------------------------------
//Interrupt Service Routine
//----------------------------------------------------------------------------
void PCA_ISR(void) interrupt 11
{
static char SUTXST = 0; //SW_UART TX????
static char SURXST = 0; //SW_UART RX????
static unsigned RXSHIFT = 0; //SW_UART RX?????
unsigned int PCA_TEMP; //??????,????PCA?????
//???
// Check receive interrupt flag first; service if CCF0 is set.
if (CCF0){
CCF0 = 0; // Clear interrupt flag.
switch (SURXST){
// State 0: START bit received.
// In this state, a negative edge on SW_TX has caused the interrupt,
// meaning a START has been detected and the PCA0CP0 registers have
// captured the value of PCA0.
// - Check for receive enable and good START bit
// - Switch PCA module 0 to software timer mode
// - Add 3/2 bit time to module 0 capture registers to sample LSB.
// - Increment RX state variable.
case 0:
if (SREN & ~SW_RX){ // Check for receive enable and a good
// START bit.
PCA_TEMP = (PCA0CPH0 << 8); // Read module 0 contents into
PCA_TEMP |= PCA0CPL0; // PCA_TEMP.
PCA_TEMP += TH_TIME_COUNT; // Add 3/2 bit times to PCA_TEMP
PCA0CPL0 = PCA_TEMP; // Restore PCA0CPL0 and PCA0CPH0
PCA0CPH0 = (PCA_TEMP >> 8); // with the updated value
PCA0CPM0 = 0x49; // Change module 0 to software
// timer mode, interrupts enabled.
SURXST++; // Update RX state variable.
}
break;
// States 1-8: Bit Received
// - Sample SW_RX pin
// - Shift new bit into RXSHIFT
// - Add 1 bit time to module 0 capture registers
// - Increment RX state variable
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
RXSHIFT = RXSHIFT >> 1; // Shift right 1 bit
if (SW_RX) // If SW_RX=1,
RXSHIFT |= 0x80; // shift '1' into RXSHIFT msb
PCA_TEMP = (PCA0CPH0 << 8); // Read module 0 contents into
PCA_TEMP |= PCA0CPL0; // PCA_TEMP.
PCA_TEMP += TIME_COUNT; // Add 1 bit time to PCA_TEMP
PCA0CPL0 = PCA_TEMP; // Restore PCA0CPL0 and PCA0CPH0
PCA0CPH0 = (PCA_TEMP >> 8); // with the updated value
SURXST++; // Update RX state variable.
break;
// State 9: 8-bits received, Capture STOP bit.
// - Move RXSHIFT into RDR.
// - Set SRI (indicate receive complete).
// - Prepare module 0 for next transfer.
// - Reset RX state variable.
// - Trigger IE7 if user-level interrupt support is enabled.
case 9:
RDR = RXSHIFT; // Move received data to receive register.
SRI = 1; // Set receive complete indicator.
PCA0CPM0 = 0x11; // Switch module 0 to negative capture
// mode; interrupt enabled for START
// detection.
SURXST = 0; // Reset RX state variable.
break;
}
}
// Check Transmit interrupt; service if CCF1 is set.
else if (CCF1){
CCF1 = 0; // Clear interrupt flag
switch (SUTXST){
// State 0: Transmit Initiated.
// Here, the user has loaded a byte to transmit into TDR, and set the
// module 1 interrupt to initiate the transfer.
// - Transmit START bit (drop SW_TX)
// - Read PCA0, add one bit time, & store in module 1 capture registers
// for first bit.
// - Increment TX state variable.
case 0:
STXBSY = 1; // SW_UART TX?
SW_TX = 0; // Drop TX pin as START bit.
PCA_TEMP = PCA0L; // Read PCA counter value into
PCA_TEMP |= (PCA0H << 8); // PCA_TEMP.
PCA_TEMP += TIME_COUNT; // Add 1 bit time.
PCA0CPL1 = PCA_TEMP; // Store updated match value into
PCA0CPH1 = (PCA_TEMP >> 8); // module 1 capture/compare registers.
PCA0CPM1 |= 0x48; // Enable module 1 software timer.
SUTXST++; // Update TX state variable.
break;
// States 1-9: Transmit Bit.
// - Output LSB of TDR onto TX
// - Shift TDR 1 bit right.
// - Shift a '1' into MSB of TDR for STOP bit in State 9.
// - Add 1 bit time to module 1 capture register
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
SW_TX = (TDR & 0x01); // Output LSB of TDR onto SW_TX pin.
TDR >>= 1; // Shift TDR right 1 bit.
TDR |= 0x80; // Shift '1' into MSB of TDR for
// STOP bit in State 9.
PCA_TEMP = (PCA0CPH1 << 8); // Read module 1 contents into
PCA_TEMP |= PCA0CPL1; // PCA_TEMP.
PCA_TEMP += TIME_COUNT; // Add 1 bit time to PCA_TEMP
PCA0CPL1 = PCA_TEMP; // Restore PCA0CPL1 and PCA0CPH1
PCA0CPH1 = (PCA_TEMP >> 8); // with the updated value
SUTXST++; // Update TX state variable.
break;
// State 10: Last bit has been transmitted. Transmit STOP bit
// and end transfer.
// - Transmit STOP bit
// - Set TX Complete indicator, clear Busy flag
// - Reset TX state
// - Prepare module 1 for next transfer.
// - Trigger IE7 interrupt if user-level interrupts enabled.
case 10:
STI = 1; // Indicate TX complete.
SUTXST = 0; // Reset TX state.
SW_TX = 1; // SW_TX should remain high.
PCA0CPM1 = 0x01; // Disable module 1 software timer; leave
// interrupt enabled for next transmit.
STXBSY = 0; // SW_UART TX free.
break;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -