⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_mul.c

📁 RMI的处理器au1200系列所用的BOOTLOAD,包括SD卡启动USB启动硬盘启动网络启动,并初始化硬件的所有参数,支持内核调试.
💻 C
📖 第 1 页 / 共 2 页
字号:
/* crypto/bn/bn_mul.c *//* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. *  * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to.  The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code.  The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). *  * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. *  * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *    "This product includes cryptographic software written by *     Eric Young (eay@cryptsoft.com)" *    The word 'cryptographic' can be left out if the rouines from the library *    being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from  *    the apps directory (application code) you must include an acknowledgement: *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" *  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. *  * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed.  i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */#include <stdio.h>#include "cryptlib.h"#include "bn_lcl.h"#ifdef BN_RECURSION/* Karatsuba recursive multiplication algorithm * (cf. Knuth, The Art of Computer Programming, Vol. 2) *//* r is 2*n2 words in size, * a and b are both n2 words in size. * n2 must be a power of 2. * We multiply and return the result. * t must be 2*n2 words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */void bn_mul_recursive(BN_ULONG * r, BN_ULONG * a, BN_ULONG * b, int n2,		      BN_ULONG * t){    int n = n2 / 2, c1, c2;    unsigned int neg, zero;    BN_ULONG ln, lo, *p;# ifdef BN_COUNT    printf(" bn_mul_recursive %d * %d\n", n2, n2);# endif# ifdef BN_MUL_COMBA#  if 0    if (n2 == 4) {	bn_mul_comba4(r, a, b);	return;    }#  endif    if (n2 == 8) {	bn_mul_comba8(r, a, b);	return;    }# endif				/* BN_MUL_COMBA */    if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {	/* This should not happen */	bn_mul_normal(r, a, n2, b, n2);	return;    }    /* r=(a[0]-a[1])*(b[1]-b[0]) */    c1 = bn_cmp_words(a, &(a[n]), n);    c2 = bn_cmp_words(&(b[n]), b, n);    zero = neg = 0;    switch (c1 * 3 + c2) {    case -4:	bn_sub_words(t, &(a[n]), a, n);	/* - */	bn_sub_words(&(t[n]), b, &(b[n]), n);	/* - */	break;    case -3:	zero = 1;	break;    case -2:	bn_sub_words(t, &(a[n]), a, n);	/* - */	bn_sub_words(&(t[n]), &(b[n]), b, n);	/* + */	neg = 1;	break;    case -1:    case 0:    case 1:	zero = 1;	break;    case 2:	bn_sub_words(t, a, &(a[n]), n);	/* + */	bn_sub_words(&(t[n]), b, &(b[n]), n);	/* - */	neg = 1;	break;    case 3:	zero = 1;	break;    case 4:	bn_sub_words(t, a, &(a[n]), n);	bn_sub_words(&(t[n]), &(b[n]), b, n);	break;    }# ifdef BN_MUL_COMBA    if (n == 4) {	if (!zero)	    bn_mul_comba4(&(t[n2]), t, &(t[n]));	else	    memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));	bn_mul_comba4(r, a, b);	bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));    } else if (n == 8) {	if (!zero)	    bn_mul_comba8(&(t[n2]), t, &(t[n]));	else	    memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));	bn_mul_comba8(r, a, b);	bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));    } else# endif				/* BN_MUL_COMBA */    {	p = &(t[n2 * 2]);	if (!zero)	    bn_mul_recursive(&(t[n2]), t, &(t[n]), n, p);	else	    memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));	bn_mul_recursive(r, a, b, n, p);	bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, p);    }    /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign     * r[10] holds (a[0]*b[0])     * r[32] holds (b[1]*b[1])     */    c1 = (int) (bn_add_words(t, r, &(r[n2]), n2));    if (neg) {			/* if t[32] is negative */	c1 -= (int) (bn_sub_words(&(t[n2]), t, &(t[n2]), n2));    } else {	/* Might have a carry */	c1 += (int) (bn_add_words(&(t[n2]), &(t[n2]), t, n2));    }    /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])     * r[10] holds (a[0]*b[0])     * r[32] holds (b[1]*b[1])     * c1 holds the carry bits     */    c1 += (int) (bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));    if (c1) {	p = &(r[n + n2]);	lo = *p;	ln = (lo + c1) & BN_MASK2;	*p = ln;	/* The overflow will stop before we over write	 * words we should not overwrite */	if (ln < (BN_ULONG) c1) {	    do {		p++;		lo = *p;		ln = (lo + 1) & BN_MASK2;		*p = ln;	    } while (ln == 0);	}    }}/* n+tn is the word length * t needs to be n*4 is size, as does r */void bn_mul_part_recursive(BN_ULONG * r, BN_ULONG * a, BN_ULONG * b,			   int tn, int n, BN_ULONG * t){    int i, j, n2 = n * 2;    unsigned int c1, c2, neg, zero;    BN_ULONG ln, lo, *p;# ifdef BN_COUNT    printf(" bn_mul_part_recursive %d * %d\n", tn + n, tn + n);# endif    if (n < 8) {	i = tn + n;	bn_mul_normal(r, a, i, b, i);	return;    }    /* r=(a[0]-a[1])*(b[1]-b[0]) */    c1 = bn_cmp_words(a, &(a[n]), n);    c2 = bn_cmp_words(&(b[n]), b, n);    zero = neg = 0;    switch (c1 * 3 + c2) {    case -4:	bn_sub_words(t, &(a[n]), a, n);	/* - */	bn_sub_words(&(t[n]), b, &(b[n]), n);	/* - */	break;    case -3:	zero = 1;	/* break; */    case -2:	bn_sub_words(t, &(a[n]), a, n);	/* - */	bn_sub_words(&(t[n]), &(b[n]), b, n);	/* + */	neg = 1;	break;    case -1:    case 0:    case 1:	zero = 1;	/* break; */    case 2:	bn_sub_words(t, a, &(a[n]), n);	/* + */	bn_sub_words(&(t[n]), b, &(b[n]), n);	/* - */	neg = 1;	break;    case 3:	zero = 1;	/* break; */    case 4:	bn_sub_words(t, a, &(a[n]), n);	bn_sub_words(&(t[n]), &(b[n]), b, n);	break;    }    /* The zero case isn't yet implemented here. The speedup       would probably be negligible. */# if 0    if (n == 4) {	bn_mul_comba4(&(t[n2]), t, &(t[n]));	bn_mul_comba4(r, a, b);	bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);	memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2));    } else# endif    if (n == 8) {	bn_mul_comba8(&(t[n2]), t, &(t[n]));	bn_mul_comba8(r, a, b);	bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);	memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2));    } else {	p = &(t[n2 * 2]);	bn_mul_recursive(&(t[n2]), t, &(t[n]), n, p);	bn_mul_recursive(r, a, b, n, p);	i = n / 2;	/* If there is only a bottom half to the number,	 * just do it */	j = tn - i;	if (j == 0) {	    bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, p);	    memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));	} else if (j > 0) {	/* eg, n == 16, i == 8 and tn == 11 */	    bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), j, i, p);	    memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2));	} else {		/* (j < 0) eg, n == 16, i == 8 and tn == 5 */	    memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);	    if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) {		bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);	    } else {		for (;;) {		    i /= 2;		    if (i < tn) {			bn_mul_part_recursive(&(r[n2]),					      &(a[n]), &(b[n]),					      tn - i, i, p);			break;		    } else if (i == tn) {			bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, p);			break;		    }		}	    }	}    }    /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign     * r[10] holds (a[0]*b[0])     * r[32] holds (b[1]*b[1])     */    c1 = (int) (bn_add_words(t, r, &(r[n2]), n2));    if (neg) {			/* if t[32] is negative */	c1 -= (int) (bn_sub_words(&(t[n2]), t, &(t[n2]), n2));    } else {	/* Might have a carry */	c1 += (int) (bn_add_words(&(t[n2]), &(t[n2]), t, n2));    }    /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])     * r[10] holds (a[0]*b[0])     * r[32] holds (b[1]*b[1])     * c1 holds the carry bits     */    c1 += (int) (bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));    if (c1) {	p = &(r[n + n2]);	lo = *p;	ln = (lo + c1) & BN_MASK2;	*p = ln;	/* The overflow will stop before we over write	 * words we should not overwrite */	if (ln < c1) {	    do {		p++;		lo = *p;		ln = (lo + 1) & BN_MASK2;		*p = ln;	    } while (ln == 0);	}    }}/* a and b must be the same size, which is n2. * r needs to be n2 words and t needs to be n2*2 */void bn_mul_low_recursive(BN_ULONG * r, BN_ULONG * a, BN_ULONG * b, int n2,			  BN_ULONG * t){    int n = n2 / 2;# ifdef BN_COUNT    printf(" bn_mul_low_recursive %d * %d\n", n2, n2);# endif    bn_mul_recursive(r, a, b, n, &(t[0]));    if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {	bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));	bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);	bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));	bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);    } else {	bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);	bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);	bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -