📄 bn_mul.c
字号:
/* crypto/bn/bn_mul.c *//* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */#include <stdio.h>#include "cryptlib.h"#include "bn_lcl.h"#ifdef BN_RECURSION/* Karatsuba recursive multiplication algorithm * (cf. Knuth, The Art of Computer Programming, Vol. 2) *//* r is 2*n2 words in size, * a and b are both n2 words in size. * n2 must be a power of 2. * We multiply and return the result. * t must be 2*n2 words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */void bn_mul_recursive(BN_ULONG * r, BN_ULONG * a, BN_ULONG * b, int n2, BN_ULONG * t){ int n = n2 / 2, c1, c2; unsigned int neg, zero; BN_ULONG ln, lo, *p;# ifdef BN_COUNT printf(" bn_mul_recursive %d * %d\n", n2, n2);# endif# ifdef BN_MUL_COMBA# if 0 if (n2 == 4) { bn_mul_comba4(r, a, b); return; }# endif if (n2 == 8) { bn_mul_comba8(r, a, b); return; }# endif /* BN_MUL_COMBA */ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { /* This should not happen */ bn_mul_normal(r, a, n2, b, n2); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_words(a, &(a[n]), n); c2 = bn_cmp_words(&(b[n]), b, n); zero = neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_words(t, &(a[n]), a, n); /* - */ bn_sub_words(&(t[n]), b, &(b[n]), n); /* - */ break; case -3: zero = 1; break; case -2: bn_sub_words(t, &(a[n]), a, n); /* - */ bn_sub_words(&(t[n]), &(b[n]), b, n); /* + */ neg = 1; break; case -1: case 0: case 1: zero = 1; break; case 2: bn_sub_words(t, a, &(a[n]), n); /* + */ bn_sub_words(&(t[n]), b, &(b[n]), n); /* - */ neg = 1; break; case 3: zero = 1; break; case 4: bn_sub_words(t, a, &(a[n]), n); bn_sub_words(&(t[n]), &(b[n]), b, n); break; }# ifdef BN_MUL_COMBA if (n == 4) { if (!zero) bn_mul_comba4(&(t[n2]), t, &(t[n])); else memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); bn_mul_comba4(r, a, b); bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); } else if (n == 8) { if (!zero) bn_mul_comba8(&(t[n2]), t, &(t[n])); else memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); bn_mul_comba8(r, a, b); bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); } else# endif /* BN_MUL_COMBA */ { p = &(t[n2 * 2]); if (!zero) bn_mul_recursive(&(t[n2]), t, &(t[n]), n, p); else memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); bn_mul_recursive(r, a, b, n, p); bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, p); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int) (bn_add_words(t, r, &(r[n2]), n2)); if (neg) { /* if t[32] is negative */ c1 -= (int) (bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int) (bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int) (bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < (BN_ULONG) c1) { do { p++; lo = *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } }}/* n+tn is the word length * t needs to be n*4 is size, as does r */void bn_mul_part_recursive(BN_ULONG * r, BN_ULONG * a, BN_ULONG * b, int tn, int n, BN_ULONG * t){ int i, j, n2 = n * 2; unsigned int c1, c2, neg, zero; BN_ULONG ln, lo, *p;# ifdef BN_COUNT printf(" bn_mul_part_recursive %d * %d\n", tn + n, tn + n);# endif if (n < 8) { i = tn + n; bn_mul_normal(r, a, i, b, i); return; } /* r=(a[0]-a[1])*(b[1]-b[0]) */ c1 = bn_cmp_words(a, &(a[n]), n); c2 = bn_cmp_words(&(b[n]), b, n); zero = neg = 0; switch (c1 * 3 + c2) { case -4: bn_sub_words(t, &(a[n]), a, n); /* - */ bn_sub_words(&(t[n]), b, &(b[n]), n); /* - */ break; case -3: zero = 1; /* break; */ case -2: bn_sub_words(t, &(a[n]), a, n); /* - */ bn_sub_words(&(t[n]), &(b[n]), b, n); /* + */ neg = 1; break; case -1: case 0: case 1: zero = 1; /* break; */ case 2: bn_sub_words(t, a, &(a[n]), n); /* + */ bn_sub_words(&(t[n]), b, &(b[n]), n); /* - */ neg = 1; break; case 3: zero = 1; /* break; */ case 4: bn_sub_words(t, a, &(a[n]), n); bn_sub_words(&(t[n]), &(b[n]), b, n); break; } /* The zero case isn't yet implemented here. The speedup would probably be negligible. */# if 0 if (n == 4) { bn_mul_comba4(&(t[n2]), t, &(t[n])); bn_mul_comba4(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); } else# endif if (n == 8) { bn_mul_comba8(&(t[n2]), t, &(t[n])); bn_mul_comba8(r, a, b); bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); } else { p = &(t[n2 * 2]); bn_mul_recursive(&(t[n2]), t, &(t[n]), n, p); bn_mul_recursive(r, a, b, n, p); i = n / 2; /* If there is only a bottom half to the number, * just do it */ j = tn - i; if (j == 0) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, p); memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2)); } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */ bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), j, i, p); memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) { bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); } else { for (;;) { i /= 2; if (i < tn) { bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), tn - i, i, p); break; } else if (i == tn) { bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, p); break; } } } } } /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int) (bn_add_words(t, r, &(r[n2]), n2)); if (neg) { /* if t[32] is negative */ c1 -= (int) (bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); } else { /* Might have a carry */ c1 += (int) (bn_add_words(&(t[n2]), &(t[n2]), t, n2)); } /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) * c1 holds the carry bits */ c1 += (int) (bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo = *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < c1) { do { p++; lo = *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } }}/* a and b must be the same size, which is n2. * r needs to be n2 words and t needs to be n2*2 */void bn_mul_low_recursive(BN_ULONG * r, BN_ULONG * a, BN_ULONG * b, int n2, BN_ULONG * t){ int n = n2 / 2;# ifdef BN_COUNT printf(" bn_mul_low_recursive %d * %d\n", n2, n2);# endif bn_mul_recursive(r, a, b, n, &(t[0])); if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); } else { bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -