⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
字号:
/* ----------------------------------------------------------------------   
* Copyright (C) 2010 ARM Limited. All rights reserved.   
*   
* $Date:        15. July 2011  
* $Revision: 	V1.0.10  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_fir_sparse_q31.c   
*   
* Description:	Q31 sparse FIR filter processing function.  
*   
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.0.10 2011/7/15 
*    Big Endian support added and Merged M0 and M3/M4 Source code.  
*   
* Version 1.0.3 2010/11/29  
*    Re-organized the CMSIS folders and updated documentation.   
*    
* Version 1.0.2 2010/11/11   
*    Documentation updated.    
*   
* Version 1.0.1 2010/10/05    
*    Production release and review comments incorporated.   
*   
* Version 1.0.0 2010/09/20    
*    Production release and review comments incorporated   
*   
* Version 0.0.7  2010/06/10    
*    Misra-C changes done   
* ------------------------------------------------------------------- */
#include "arm_math.h"


/**   
 * @addtogroup FIR_Sparse   
 * @{   
 */

/**  
 * @brief Processing function for the Q31 sparse FIR filter.  
 * @param[in]  *S          points to an instance of the Q31 sparse FIR structure.  
 * @param[in]  *pSrc       points to the block of input data.  
 * @param[out] *pDst       points to the block of output data  
 * @param[in]  *pScratchIn points to a temporary buffer of size blockSize.  
 * @param[in]  blockSize   number of input samples to process per call.  
 * @return none.  
 *   
 * <b>Scaling and Overflow Behavior:</b>   
 * \par   
 * The function is implemented using an internal 32-bit accumulator.  
 * The 1.31 x 1.31 multiplications are truncated to 2.30 format.  
 * This leads to loss of precision on the intermediate multiplications and provides only a single guard bit.   
 * If the accumulator result overflows, it wraps around rather than saturate.  
 * In order to avoid overflows the input signal or coefficients must be scaled down by log2(numTaps) bits.  
 */

void arm_fir_sparse_q31(
  arm_fir_sparse_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pDst,
  q31_t * pScratchIn,
  uint32_t blockSize)
{

  q31_t *pState = S->pState;                     /* State pointer */
  q31_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q31_t *px;                                     /* Scratch buffer pointer */
  q31_t *py = pState;                            /* Temporary pointers for state buffer */
  q31_t *pb = pScratchIn;                        /* Temporary pointers for scratch buffer */
  q31_t *pOut;                                   /* Destination pointer */
  q63_t out;                                     /* Temporary output variable */
  int32_t *pTapDelay = S->pTapDelay;             /* Pointer to the array containing offset of the non-zero tap values. */
  uint32_t delaySize = S->maxDelay + blockSize;  /* state length */
  uint16_t numTaps = S->numTaps;                 /* Filter order */
  int32_t readIndex;                             /* Read index of the state buffer */
  uint32_t tapCnt, blkCnt;                       /* loop counters */
  q31_t coeff = *pCoeffs++;                      /* Read the first coefficient value */
  q31_t in;


  /* BlockSize of Input samples are copied into the state buffer */
  /* StateIndex points to the starting position to write in the state buffer */
  arm_circularWrite_f32((int32_t *) py, delaySize, &S->stateIndex, 1,
                        (int32_t *) pSrc, 1, blockSize);

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Working pointer for state buffer is updated */
  py = pState;

  /* blockSize samples are read from the state buffer */
  arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
                       (int32_t *) pb, (int32_t *) pb, blockSize, 1,
                       blockSize);

  /* Working pointer for the scratch buffer of state values */
  px = pb;

  /* Working pointer for scratch buffer of output values */
  pOut = pDst;


#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  /* Loop over the blockSize. Unroll by a factor of 4.   
   * Compute 4 Multiplications at a time. */
  blkCnt = blockSize >> 2;

  while(blkCnt > 0u)
  {
    /* Perform Multiplications and store in the destination buffer */
    *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
    *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
    *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);
    *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4,   
   * compute the remaining samples */
  blkCnt = blockSize % 0x4u;

  while(blkCnt > 0u)
  {
    /* Perform Multiplications and store in the destination buffer */
    *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Load the coefficient value and   
   * increment the coefficient buffer for the next set of state values */
  coeff = *pCoeffs++;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Loop over the number of taps. */
  tapCnt = (uint32_t) numTaps - 1u;

  while(tapCnt > 0u)
  {
    /* Working pointer for state buffer is updated */
    py = pState;

    /* blockSize samples are read from the state buffer */
    arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
                         (int32_t *) pb, (int32_t *) pb, blockSize, 1,
                         blockSize);

    /* Working pointer for the scratch buffer of state values */
    px = pb;

    /* Working pointer for scratch buffer of output values */
    pOut = pDst;

    /* Loop over the blockSize. Unroll by a factor of 4.   
     * Compute 4 MACS at a time. */
    blkCnt = blockSize >> 2;

    while(blkCnt > 0u)
    {
      out = *pOut;
      out += ((q63_t) * px++ * coeff) >> 32;
      *pOut++ = (q31_t) (out);

      out = *pOut;
      out += ((q63_t) * px++ * coeff) >> 32;
      *pOut++ = (q31_t) (out);

      out = *pOut;
      out += ((q63_t) * px++ * coeff) >> 32;
      *pOut++ = (q31_t) (out);

      out = *pOut;
      out += ((q63_t) * px++ * coeff) >> 32;
      *pOut++ = (q31_t) (out);

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* If the blockSize is not a multiple of 4,   
     * compute the remaining samples */
    blkCnt = blockSize % 0x4u;

    while(blkCnt > 0u)
    {
      /* Perform Multiply-Accumulate */
      out = *pOut;
      out += ((q63_t) * px++ * coeff) >> 32;
      *pOut++ = (q31_t) (out);

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* Load the coefficient value and   
     * increment the coefficient buffer for the next set of state values */
    coeff = *pCoeffs++;

    /* Read Index, from where the state buffer should be read, is calculated. */
    readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;

    /* Wraparound of readIndex */
    if(readIndex < 0)
    {
      readIndex += (int32_t) delaySize;
    }

    /* Decrement the tap loop counter */
    tapCnt--;
  }

  /* Working output pointer is updated */
  pOut = pDst;

  /* Output is converted into 1.31 format. */
  /* Loop over the blockSize. Unroll by a factor of 4.   
   * process 4 output samples at a time. */
  blkCnt = blockSize >> 2;

  while(blkCnt > 0u)
  {
    in = *pOut << 1;
    *pOut++ = in;
    in = *pOut << 1;
    *pOut++ = in;
    in = *pOut << 1;
    *pOut++ = in;
    in = *pOut << 1;
    *pOut++ = in;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4,   
   * process the remaining output samples */
  blkCnt = blockSize % 0x4u;

  while(blkCnt > 0u)
  {
    in = *pOut << 1;
    *pOut++ = in;

    /* Decrement the loop counter */
    blkCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */
  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
    /* Perform Multiplications and store in the destination buffer */
    *pOut++ = (q31_t) (((q63_t) * px++ * coeff) >> 32);

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Load the coefficient value and          
   * increment the coefficient buffer for the next set of state values */
  coeff = *pCoeffs++;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Loop over the number of taps. */
  tapCnt = (uint32_t) numTaps - 1u;

  while(tapCnt > 0u)
  {
    /* Working pointer for state buffer is updated */
    py = pState;

    /* blockSize samples are read from the state buffer */
    arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
                         (int32_t *) pb, (int32_t *) pb, blockSize, 1,
                         blockSize);

    /* Working pointer for the scratch buffer of state values */
    px = pb;

    /* Working pointer for scratch buffer of output values */
    pOut = pDst;

    blkCnt = blockSize;

    while(blkCnt > 0u)
    {
      /* Perform Multiply-Accumulate */
      out = *pOut;
      out += ((q63_t) * px++ * coeff) >> 32;
      *pOut++ = (q31_t) (out);

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* Load the coefficient value and          
     * increment the coefficient buffer for the next set of state values */
    coeff = *pCoeffs++;

    /* Read Index, from where the state buffer should be read, is calculated. */
    readIndex = (int32_t) (S->stateIndex - blockSize) - *pTapDelay++;

    /* Wraparound of readIndex */
    if(readIndex < 0)
    {
      readIndex += (int32_t) delaySize;
    }

    /* Decrement the tap loop counter */
    tapCnt--;
  }

  /* Working output pointer is updated */
  pOut = pDst;

  /* Output is converted into 1.31 format. */
  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
    in = *pOut << 1;
    *pOut++ = in;

    /* Decrement the loop counter */
    blkCnt--;
  }

#endif /*   #ifndef ARM_MATH_CM0 */

}

/**   
 * @} end of FIR_Sparse group   
 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -