⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
📖 第 1 页 / 共 2 页
字号:

#ifdef  ARM_MATH_BIG_ENDIAN

        c0 = c0 << 16u;

#endif /*      #ifdef  ARM_MATH_BIG_ENDIAN     */

        /* Read x[7] */
        x3 = *(q31_t *) px++;

        /* Perform the multiply-accumulates */
        acc0 = __SMLALD(x0, c0, acc0);
        acc1 = __SMLALD(x1, c0, acc1);
        acc2 = __SMLALDX(x1, c0, acc2);
        acc3 = __SMLALDX(x3, c0, acc3);
      }

      if(k == 2u)
      {
        /* Read y[srcBLen - 5], y[srcBLen - 6] */
        c0 = *(pb);

        /* Read x[7], x[8] */
        x3 = *(q31_t *) px++;

        /* Read x[9] */
        x2 = *(q31_t *) px++;

        /* Perform the multiply-accumulates */
        acc0 = __SMLALDX(x0, c0, acc0);
        acc1 = __SMLALDX(x1, c0, acc1);
        acc2 = __SMLALDX(x3, c0, acc2);
        acc3 = __SMLALDX(x2, c0, acc3);
      }

      if(k == 3u)
      {
        /* Read y[srcBLen - 5], y[srcBLen - 6] */
        c0 = *pb--;

        /* Read x[7], x[8] */
        x3 = *(q31_t *) px++;

        /* Read x[9] */
        x2 = *(q31_t *) px++;

        /* Perform the multiply-accumulates */
        acc0 = __SMLALDX(x0, c0, acc0);
        acc1 = __SMLALDX(x1, c0, acc1);
        acc2 = __SMLALDX(x3, c0, acc2);
        acc3 = __SMLALDX(x2, c0, acc3);

#ifdef  ARM_MATH_BIG_ENDIAN

        /* Read y[srcBLen - 7] */
        c0 = (*pb);

        //c0 = (c0 & 0x0000FFFF)<<16; 
        c0 = (c0) << 16;

#else

        /* Read y[srcBLen - 7] */
        c0 = (q15_t) (*pb >> 16);

#endif /*      #ifdef  ARM_MATH_BIG_ENDIAN     */

        /* Read x[10] */
        x3 = *(q31_t *) px++;

        /* Perform the multiply-accumulates */
        acc0 = __SMLALDX(x1, c0, acc0);
        acc1 = __SMLALD(x2, c0, acc1);
        acc2 = __SMLALDX(x2, c0, acc2);
        acc3 = __SMLALDX(x3, c0, acc3);
      }


      /* Store the results in the accumulators in the destination buffer. */

#ifndef  ARM_MATH_BIG_ENDIAN

      *__SIMD32(pOut)++ =
        __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
      *__SIMD32(pOut)++ =
        __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);

#else

      *__SIMD32(pOut)++ =
        __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
      *__SIMD32(pOut)++ =
        __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + (count * 4u);
      py = pSrc2;
      pb = (q31_t *) (py - 1);

      /* Increment the pointer pIn1 index, count by 1 */
      count++;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.   
     ** No loop unrolling is used. */
    blkCnt = blockSize2 % 0x4u;

    while(blkCnt > 0u)
    {
      /* Accumulator is made zero for every iteration */
      sum = 0;

      /* Apply loop unrolling and compute 4 MACs simultaneously. */
      k = srcBLen >> 2u;

      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
      while(k > 0u)
      {
        /* Perform the multiply-accumulates */
        sum += (q63_t) ((q31_t) * px++ * *py--);
        sum += (q63_t) ((q31_t) * px++ * *py--);
        sum += (q63_t) ((q31_t) * px++ * *py--);
        sum += (q63_t) ((q31_t) * px++ * *py--);

        /* Decrement the loop counter */
        k--;
      }

      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.   
       ** No loop unrolling is used. */
      k = srcBLen % 0x4u;

      while(k > 0u)
      {
        /* Perform the multiply-accumulates */
        sum += (q63_t) ((q31_t) * px++ * *py--);

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pSrc2;

      /* Increment the pointer pIn1 index, count by 1 */
      count++;

      /* Decrement the loop counter */
      blkCnt--;
    }
  }
  else
  {
    /* If the srcBLen is not a multiple of 4,   
     * the blockSize2 loop cannot be unrolled by 4 */
    blkCnt = blockSize2;

    while(blkCnt > 0u)
    {
      /* Accumulator is made zero for every iteration */
      sum = 0;

      /* srcBLen number of MACS should be performed */
      k = srcBLen;

      while(k > 0u)
      {
        /* Perform the multiply-accumulate */
        sum += (q63_t) ((q31_t) * px++ * *py--);

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pSrc2;

      /* Increment the MAC count */
      count++;

      /* Decrement the loop counter */
      blkCnt--;
    }
  }


  /* --------------------------   
   * Initializations of stage3   
   * -------------------------*/

  /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]   
   * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]   
   * ....   
   * sum +=  x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]   
   * sum +=  x[srcALen-1] * y[srcBLen-1]   
   */

  /* In this stage the MAC operations are decreased by 1 for every iteration.   
     The blockSize3 variable holds the number of MAC operations performed */

  blockSize3 = srcBLen - 1u;

  /* Working pointer of inputA */
  pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
  px = pSrc1;

  /* Working pointer of inputB */
  pSrc2 = pIn2 + (srcBLen - 1u);
  pIn2 = pSrc2 - 1u;
  py = pIn2;

  /* -------------------   
   * Stage3 process   
   * ------------------*/

  /* For loop unrolling by 4, this stage is divided into two. */
  /* First part of this stage computes the MAC operations greater than 4 */
  /* Second part of this stage computes the MAC operations less than or equal to 4 */

  /* The first part of the stage starts here */
  j = blockSize3 >> 2u;

  while((j > 0u) && (blockSize3 > 0u))
  {
    /* Accumulator is made zero for every iteration */
    sum = 0;

    /* Apply loop unrolling and compute 4 MACs simultaneously. */
    k = blockSize3 >> 2u;

    /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
     ** a second loop below computes MACs for the remaining 1 to 3 samples. */
    while(k > 0u)
    {
      /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied   
       * with y[srcBLen - 1], y[srcBLen - 2] respectively */
      sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
      /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied   
       * with y[srcBLen - 3], y[srcBLen - 4] respectively */
      sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);

      /* Decrement the loop counter */
      k--;
    }

    /* For the next MAC operations, the pointer py is used without SIMD   
     * So, py is incremented by 1 */
    py = py + 1u;

    /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.   
     ** No loop unrolling is used. */
    k = blockSize3 % 0x4u;

    while(k > 0u)
    {
      /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
      sum = __SMLALD(*px++, *py--, sum);

      /* Decrement the loop counter */
      k--;
    }

    /* Store the result in the accumulator in the destination buffer. */
    *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));

    /* Update the inputA and inputB pointers for next MAC calculation */
    px = ++pSrc1;
    py = pIn2;

    /* Decrement the loop counter */
    blockSize3--;

    j--;
  }

  /* The second part of the stage starts here */
  /* SIMD is not used for the next MAC operations,   
   * so pointer py is updated to read only one sample at a time */
  py = py + 1u;

  while(blockSize3 > 0u)
  {
    /* Accumulator is made zero for every iteration */
    sum = 0;

    /* Apply loop unrolling and compute 4 MACs simultaneously. */
    k = blockSize3;

    while(k > 0u)
    {
      /* Perform the multiply-accumulates */
      /* sum +=  x[srcALen-1] * y[srcBLen-1] */
      sum = __SMLALD(*px++, *py--, sum);

      /* Decrement the loop counter */
      k--;
    }

    /* Store the result in the accumulator in the destination buffer. */
    *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));

    /* Update the inputA and inputB pointers for next MAC calculation */
    px = ++pSrc1;
    py = pSrc2;

    /* Decrement the loop counter */
    blockSize3--;
  }

#else

/* Run the below code for Cortex-M0 */

  q15_t *pIn1 = pSrcA;                           /* input pointer */
  q15_t *pIn2 = pSrcB;                           /* coefficient pointer */
  q63_t sum;                                     /* Accumulator */
  uint32_t i, j;                                 /* loop counter */

  /* Loop to calculate output of convolution for output length number of times */
  for (i = 0; i < (srcALen + srcBLen - 1); i++)
  {
    /* Initialize sum with zero to carry on MAC operations */
    sum = 0;

    /* Loop to perform MAC operations according to convolution equation */
    for (j = 0; j <= i; j++)
    {
      /* Check the array limitations */
      if(((i - j) < srcBLen) && (j < srcALen))
      {
        /* z[i] += x[i-j] * y[j] */
        sum += (q31_t) pIn1[j] * (pIn2[i - j]);
      }
    }

    /* Store the output in the destination buffer */
    pDst[i] = (q15_t) __SSAT((sum >> 15u), 16u);
  }



#endif /*   #ifndef ARM_MATH_CM0 */



}

/**   
 * @} end of Conv group   
 */


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -