⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
字号:
/* ----------------------------------------------------------------------   
* Copyright (C) 2010 ARM Limited. All rights reserved.   
*   
* $Date:        15. July 2011  
* $Revision: 	V1.0.10  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_fir_sparse_q7.c   
*   
* Description:	Q7 sparse FIR filter processing function.  
*   
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.0.10 2011/7/15 
*    Big Endian support added and Merged M0 and M3/M4 Source code.  
*   
* Version 1.0.3 2010/11/29  
*    Re-organized the CMSIS folders and updated documentation.   
*    
* Version 1.0.2 2010/11/11   
*    Documentation updated.    
*   
* Version 1.0.1 2010/10/05    
*    Production release and review comments incorporated.   
*   
* Version 1.0.0 2010/09/20    
*    Production release and review comments incorporated   
*   
* Version 0.0.7  2010/06/10    
*    Misra-C changes done   
* ------------------------------------------------------------------- */
#include "arm_math.h"


/**   
 * @ingroup groupFilters   
 */

/**   
 * @addtogroup FIR_Sparse   
 * @{   
 */


/**  
 * @brief Processing function for the Q7 sparse FIR filter.  
 * @param[in]  *S           points to an instance of the Q7 sparse FIR structure.  
 * @param[in]  *pSrc        points to the block of input data.  
 * @param[out] *pDst        points to the block of output data  
 * @param[in]  *pScratchIn  points to a temporary buffer of size blockSize.  
 * @param[in]  *pScratchOut points to a temporary buffer of size blockSize.  
 * @param[in]  blockSize    number of input samples to process per call.  
 * @return none.  
 *   
 * <b>Scaling and Overflow Behavior:</b>   
 * \par   
 * The function is implemented using a 32-bit internal accumulator.   
 * Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result.   
 * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.   
 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.   
 * The accumulator is then converted to 18.7 format by discarding the low 7 bits.  
 * Finally, the result is truncated to 1.7 format.  
 */

void arm_fir_sparse_q7(
  arm_fir_sparse_instance_q7 * S,
  q7_t * pSrc,
  q7_t * pDst,
  q7_t * pScratchIn,
  q31_t * pScratchOut,
  uint32_t blockSize)
{

  q7_t *pState = S->pState;                      /* State pointer */
  q7_t *pCoeffs = S->pCoeffs;                    /* Coefficient pointer */
  q7_t *px;                                      /* Scratch buffer pointer */
  q7_t *py = pState;                             /* Temporary pointers for state buffer */
  q7_t *pb = pScratchIn;                         /* Temporary pointers for scratch buffer */
  q7_t *pOut = pDst;                             /* Destination pointer */
  int32_t *pTapDelay = S->pTapDelay;             /* Pointer to the array containing offset of the non-zero tap values. */
  uint32_t delaySize = S->maxDelay + blockSize;  /* state length */
  uint16_t numTaps = S->numTaps;                 /* Filter order */
  int32_t readIndex;                             /* Read index of the state buffer */
  uint32_t tapCnt, blkCnt;                       /* loop counters */
  q7_t coeff = *pCoeffs++;                       /* Read the coefficient value */
  q31_t *pScr2 = pScratchOut;                    /* Working pointer for scratch buffer of output values */
  q31_t in;


#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  q7_t in1, in2, in3, in4;

  /* BlockSize of Input samples are copied into the state buffer */
  /* StateIndex points to the starting position to write in the state buffer */
  arm_circularWrite_q7(py, (int32_t) delaySize, &S->stateIndex, 1, pSrc, 1,
                       blockSize);

  /* Loop over the number of taps. */
  tapCnt = numTaps;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Working pointer for state buffer is updated */
  py = pState;

  /* blockSize samples are read from the state buffer */
  arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
                      (int32_t) blockSize, 1, blockSize);

  /* Working pointer for the scratch buffer of state values */
  px = pb;

  /* Working pointer for scratch buffer of output values */
  pScratchOut = pScr2;

  /* Loop over the blockSize. Unroll by a factor of 4.   
   * Compute 4 multiplications at a time. */
  blkCnt = blockSize >> 2;

  while(blkCnt > 0u)
  {
    /* Perform multiplication and store in the scratch buffer */
    *pScratchOut++ = ((q31_t) * px++ * coeff);
    *pScratchOut++ = ((q31_t) * px++ * coeff);
    *pScratchOut++ = ((q31_t) * px++ * coeff);
    *pScratchOut++ = ((q31_t) * px++ * coeff);

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4,   
   * compute the remaining samples */
  blkCnt = blockSize % 0x4u;

  while(blkCnt > 0u)
  {
    /* Perform multiplication and store in the scratch buffer */
    *pScratchOut++ = ((q31_t) * px++ * coeff);

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Load the coefficient value and   
   * increment the coefficient buffer for the next set of state values */
  coeff = *pCoeffs++;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Loop over the number of taps. */
  tapCnt = (uint32_t) numTaps - 1u;

  while(tapCnt > 0u)
  {
    /* Working pointer for state buffer is updated */
    py = pState;

    /* blockSize samples are read from the state buffer */
    arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
                        (int32_t) blockSize, 1, blockSize);

    /* Working pointer for the scratch buffer of state values */
    px = pb;

    /* Working pointer for scratch buffer of output values */
    pScratchOut = pScr2;

    /* Loop over the blockSize. Unroll by a factor of 4.   
     * Compute 4 MACS at a time. */
    blkCnt = blockSize >> 2;

    while(blkCnt > 0u)
    {
      /* Perform Multiply-Accumulate */
      in = *pScratchOut + ((q31_t) * px++ * coeff);
      *pScratchOut++ = in;
      in = *pScratchOut + ((q31_t) * px++ * coeff);
      *pScratchOut++ = in;
      in = *pScratchOut + ((q31_t) * px++ * coeff);
      *pScratchOut++ = in;
      in = *pScratchOut + ((q31_t) * px++ * coeff);
      *pScratchOut++ = in;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* If the blockSize is not a multiple of 4,   
     * compute the remaining samples */
    blkCnt = blockSize % 0x4u;

    while(blkCnt > 0u)
    {
      /* Perform Multiply-Accumulate */
      in = *pScratchOut + ((q31_t) * px++ * coeff);
      *pScratchOut++ = in;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* Load the coefficient value and   
     * increment the coefficient buffer for the next set of state values */
    coeff = *pCoeffs++;

    /* Read Index, from where the state buffer should be read, is calculated. */
    readIndex = ((int32_t) S->stateIndex -
                 (int32_t) blockSize) - *pTapDelay++;

    /* Wraparound of readIndex */
    if(readIndex < 0)
    {
      readIndex += (int32_t) delaySize;
    }

    /* Decrement the tap loop counter */
    tapCnt--;
  }

  /* All the output values are in pScratchOut buffer.   
     Convert them into 1.15 format, saturate and store in the destination buffer. */
  /* Loop over the blockSize. */
  blkCnt = blockSize >> 2;

  while(blkCnt > 0u)
  {
    in1 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
    in2 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
    in3 = (q7_t) __SSAT(*pScr2++ >> 7, 8);
    in4 = (q7_t) __SSAT(*pScr2++ >> 7, 8);

    *__SIMD32(pOut)++ = __PACKq7(in1, in2, in3, in4);

    /* Decrement the blockSize loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4,   
     remaining samples are processed in the below loop */
  blkCnt = blockSize % 0x4u;

  while(blkCnt > 0u)
  {
    *pOut++ = (q7_t) __SSAT(*pScr2++ >> 7, 8);

    /* Decrement the blockSize loop counter */
    blkCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */

  /* BlockSize of Input samples are copied into the state buffer */
  /* StateIndex points to the starting position to write in the state buffer */
  arm_circularWrite_q7(py, (int32_t) delaySize, &S->stateIndex, 1, pSrc, 1,
                       blockSize);

  /* Loop over the number of taps. */
  tapCnt = numTaps;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Working pointer for state buffer is updated */
  py = pState;

  /* blockSize samples are read from the state buffer */
  arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
                      (int32_t) blockSize, 1, blockSize);

  /* Working pointer for the scratch buffer of state values */
  px = pb;

  /* Working pointer for scratch buffer of output values */
  pScratchOut = pScr2;

  /* Loop over the blockSize */
  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
    /* Perform multiplication and store in the scratch buffer */
    *pScratchOut++ = ((q31_t) * px++ * coeff);

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Load the coefficient value and          
   * increment the coefficient buffer for the next set of state values */
  coeff = *pCoeffs++;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Loop over the number of taps. */
  tapCnt = (uint32_t) numTaps - 1u;

  while(tapCnt > 0u)
  {
    /* Working pointer for state buffer is updated */
    py = pState;

    /* blockSize samples are read from the state buffer */
    arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb,
                        (int32_t) blockSize, 1, blockSize);

    /* Working pointer for the scratch buffer of state values */
    px = pb;

    /* Working pointer for scratch buffer of output values */
    pScratchOut = pScr2;

    /* Loop over the blockSize */
    blkCnt = blockSize;

    while(blkCnt > 0u)
    {
      /* Perform Multiply-Accumulate */
      in = *pScratchOut + ((q31_t) * px++ * coeff);
      *pScratchOut++ = in;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* Load the coefficient value and          
     * increment the coefficient buffer for the next set of state values */
    coeff = *pCoeffs++;

    /* Read Index, from where the state buffer should be read, is calculated. */
    readIndex =
      ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

    /* Wraparound of readIndex */
    if(readIndex < 0)
    {
      readIndex += (int32_t) delaySize;
    }

    /* Decrement the tap loop counter */
    tapCnt--;
  }

  /* All the output values are in pScratchOut buffer.      
     Convert them into 1.15 format, saturate and store in the destination buffer. */
  /* Loop over the blockSize. */
  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
    *pOut++ = (q7_t) __SSAT(*pScr2++ >> 7, 8);

    /* Decrement the blockSize loop counter */
    blkCnt--;
  }

#endif /*   #ifndef ARM_MATH_CM0 */

}

/**   
 * @} end of FIR_Sparse group   
 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -