⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
字号:
/* ----------------------------------------------------------------------   
* Copyright (C) 2010 ARM Limited. All rights reserved.   
*   
* $Date:        15. July 2011  
* $Revision: 	V1.0.10  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_biquad_cascade_df1_q15.c   
*   
* Description:	Processing function for the   
*				Q15 Biquad cascade DirectFormI(DF1) filter.   
*   
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.0.10 2011/7/15 
*    Big Endian support added and Merged M0 and M3/M4 Source code.  
*   
* Version 1.0.3 2010/11/29  
*    Re-organized the CMSIS folders and updated documentation.   
*    
* Version 1.0.2 2010/11/11   
*    Documentation updated.    
*   
* Version 1.0.1 2010/10/05    
*    Production release and review comments incorporated.   
*   
* Version 1.0.0 2010/09/20    
*    Production release and review comments incorporated.   
*   
* Version 0.0.5  2010/04/26    
* 	 incorporated review comments and updated with latest CMSIS layer   
*   
* Version 0.0.3  2010/03/10    
*    Initial version   
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**   
 * @ingroup groupFilters   
 */

/**   
 * @addtogroup BiquadCascadeDF1   
 * @{   
 */

/**   
 * @brief Processing function for the Q15 Biquad cascade filter.   
 * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.   
 * @param[in]  *pSrc points to the block of input data.   
 * @param[out] *pDst points to the location where the output result is written.   
 * @param[in]  blockSize number of samples to process per call.   
 * @return none.   
 *   
 *   
 * <b>Scaling and Overflow Behavior:</b>   
 * \par   
 * The function is implemented using a 64-bit internal accumulator.   
 * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.   
 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.   
 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.   
 * The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.   
 * Finally, the result is saturated to 1.15 format.   
 *   
 * \par   
 * Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.   
 */

void arm_biquad_cascade_df1_q15(
  const arm_biquad_casd_df1_inst_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{


#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  q15_t *pIn = pSrc;                             /*  Source pointer                               */
  q15_t *pOut = pDst;                            /*  Destination pointer                          */
  q31_t in;                                      /*  Temporary variable to hold input value       */
  q31_t out;                                     /*  Temporary variable to hold output value      */
  q31_t b0;                                      /*  Temporary variable to hold bo value          */
  q31_t b1, a1;                                  /*  Filter coefficients                          */
  q31_t state_in, state_out;                     /*  Filter state variables                       */
  q63_t acc;                                     /*  Accumulator                                  */
  int32_t shift = (15 - (int32_t) S->postShift); /*  Post shift                                   */
  q15_t *pState = S->pState;                     /*  State pointer                                */
  q15_t *pCoeffs = S->pCoeffs;                   /*  Coefficient pointer                          */
  q31_t *pState_q31;                             /*  32-bit state pointer for SIMD implementation */
  uint32_t sample, stage = (uint32_t) S->numStages;     /*  Stage loop counter                           */

  do
  {
    /* Initialize state pointer of type q31 */
    pState_q31 = (q31_t *) (pState);

    /* Read the b0 and 0 coefficients using SIMD  */
    b0 = *__SIMD32(pCoeffs)++;

    /* Read the b1 and b2 coefficients using SIMD */
    b1 = *__SIMD32(pCoeffs)++;

    /* Read the a1 and a2 coefficients using SIMD */
    a1 = *__SIMD32(pCoeffs)++;

    /* Read the input state values from the state buffer:  x[n-1], x[n-2] */
    state_in = (q31_t) (*pState_q31++);

    /* Read the output state values from the state buffer:  y[n-1], y[n-2] */
    state_out = (q31_t) (*pState_q31);

    /* Apply loop unrolling and compute 2 output values simultaneously. */
    /*      The variable acc hold output values that are being computed:   
     *   
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]   
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]   
     */
    sample = blockSize >> 1u;

    /* First part of the processing with loop unrolling.  Compute 2 outputs at a time.   
     ** a second loop below computes the remaining 1 sample. */
    while(sample > 0u)
    {

      /* Read the input */
      in = *__SIMD32(pIn)++;

      /* out =  b0 * x[n] + 0 * 0 */
      out = __SMUAD(b0, in);

      /* acc +=  b1 * x[n-1] +  b2 * x[n-2] + out */
      acc = __SMLALD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] +  a2 * y[n-2] */
      acc = __SMLALD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
      out = __SSAT((acc >> shift), 16);

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
      state_out = __PKHBT(state_out >> 16, (out), 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

      /* out =  b0 * x[n] + 0 * 0 */
      out = __SMUADX(b0, in);
      /* acc +=  b1 * x[n-1] +  b2 * x[n-2] + out */
      acc = __SMLALD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + a2 * y[n-2] */
      acc = __SMLALD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
      out = __SSAT((acc >> shift), 16);

      /* Store the output in the destination buffer. */

#ifndef  ARM_MATH_BIG_ENDIAN

      *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);

#else

      *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in >> 16, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, in, 16);
      state_out = __PKHBT(state_out >> 16, out, 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */


      /* Decrement the loop counter */
      sample--;

    }

    /* If the blockSize is not a multiple of 2, compute any remaining output samples here.   
     ** No loop unrolling is used. */

    if((blockSize & 0x1u) != 0u)
    {
      /* Read the input */
      in = *pIn++;

      /* out =  b0 * x[n] + 0 * 0 */

#ifndef  ARM_MATH_BIG_ENDIAN

      out = __SMUAD(b0, in);

#else

      out = __SMUADX(b0, in);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

      /* acc =  b1 * x[n-1] + b2 * x[n-2] + out */
      acc = __SMLALD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + a2 * y[n-2] */
      acc = __SMLALD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
      out = __SSAT((acc >> shift), 16);

      /* Store the output in the destination buffer. */
      *pOut++ = (q15_t) out;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, in, 16);
      state_out = __PKHBT(state_out >> 16, out, 16);

#endif /*   #ifndef  ARM_MATH_BIG_ENDIAN    */

    }

    /*  The first stage goes from the input wire to the output wire.  */
    /*  Subsequent numStages occur in-place in the output wire  */
    pIn = pDst;

    /* Reset the output pointer */
    pOut = pDst;

    /*  Store the updated state variables back into the state array */
    *__SIMD32(pState)++ = state_in;
    *__SIMD32(pState)++ = state_out;


    /* Decrement the loop counter */
    stage--;

  } while(stage > 0u);

#else

  /* Run the below code for Cortex-M0 */

  q15_t *pIn = pSrc;                             /*  Source pointer                               */
  q15_t *pOut = pDst;                            /*  Destination pointer                          */
  q15_t b0, b1, b2, a1, a2;                      /*  Filter coefficients           */
  q15_t Xn1, Xn2, Yn1, Yn2;                      /*  Filter state variables        */
  q15_t Xn;                                      /*  temporary input               */
  q63_t acc;                                     /*  Accumulator                                  */
  int32_t shift = (15 - (int32_t) S->postShift); /*  Post shift                                   */
  q15_t *pState = S->pState;                     /*  State pointer                                */
  q15_t *pCoeffs = S->pCoeffs;                   /*  Coefficient pointer                          */
  uint32_t sample, stage = (uint32_t) S->numStages;     /*  Stage loop counter                           */

  do
  {
    /* Reading the coefficients */
    b0 = *pCoeffs++;
    b1 = *pCoeffs++;
    b2 = *pCoeffs++;
    a1 = *pCoeffs++;
    a2 = *pCoeffs++;

    /* Reading the state values */
    Xn1 = pState[0];
    Xn2 = pState[1];
    Yn1 = pState[2];
    Yn2 = pState[3];

    /*      The variables acc holds the output value that is computed:        
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]        
     */

    sample = blockSize;

    while(sample > 0u)
    {
      /* Read the input */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      /* acc =  b0 * x[n] */
      acc = (q31_t) b0 *Xn;

      /* acc +=  b1 * x[n-1] */
      acc += (q31_t) b1 *Xn1;
      /* acc +=  b[2] * x[n-2] */
      acc += (q31_t) b2 *Xn2;
      /* acc +=  a1 * y[n-1] */
      acc += (q31_t) a1 *Yn1;
      /* acc +=  a2 * y[n-2] */
      acc += (q31_t) a2 *Yn2;

      /* The result is converted to 1.31  */
      acc = __SSAT((acc >> shift), 16);

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc    */
      Xn2 = Xn1;
      Xn1 = Xn;
      Yn2 = Yn1;
      Yn1 = (q15_t) acc;

      /* Store the output in the destination buffer. */
      *pOut++ = (q15_t) acc;

      /* decrement the loop counter */
      sample--;
    }

    /*  The first stage goes from the input buffer to the output buffer. */
    /*  Subsequent stages occur in-place in the output buffer */
    pIn = pDst;

    /* Reset to destination pointer */
    pOut = pDst;

    /*  Store the updated state variables back into the pState array */
    *pState++ = Xn1;
    *pState++ = Xn2;
    *pState++ = Yn1;
    *pState++ = Yn2;

  } while(--stage);

#endif /*     #ifndef ARM_MATH_CM0 */

}


/**   
 * @} end of BiquadCascadeDF1 group   
 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -