⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
字号:
/* ----------------------------------------------------------------------   
* Copyright (C) 2010 ARM Limited. All rights reserved.   
*   
* $Date:        15. July 2011  
* $Revision: 	V1.0.10  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_fir_f32.c   
*   
* Description:	Floating-point FIR filter processing function.   
*   
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.0.10 2011/7/15 
*    Big Endian support added and Merged M0 and M3/M4 Source code.  
*   
* Version 1.0.3 2010/11/29  
*    Re-organized the CMSIS folders and updated documentation.   
*    
* Version 1.0.2 2010/11/11   
*    Documentation updated.    
*   
* Version 1.0.1 2010/10/05    
*    Production release and review comments incorporated.   
*   
* Version 1.0.0 2010/09/20    
*    Production release and review comments incorporated.   
*   
* Version 0.0.5  2010/04/26    
* 	 incorporated review comments and updated with latest CMSIS layer   
*   
* Version 0.0.3  2010/03/10    
*    Initial version   
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**   
 * @ingroup groupFilters   
 */

/**   
 * @defgroup FIR Finite Impulse Response (FIR) Filters   
 *   
 * This set of functions implements Finite Impulse Response (FIR) filters   
 * for Q7, Q15, Q31, and floating-point data types.   
 * Fast versions of Q15 and Q31 are also provided on Cortex-M4 and Cortex-M3.   
 * The functions operate on blocks of input and output data and each call to the function processes   
 * <code>blockSize</code> samples through the filter.  <code>pSrc</code> and   
 * <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.   
 *   
 * \par Algorithm:   
 * The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.   
 * Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.   
 * <pre>   
 *    y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]   
 * </pre>   
 * \par   
 * \image html FIR.gif "Finite Impulse Response filter"   
 * \par   
 * <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.   
 * Coefficients are stored in time reversed order.   
 * \par   
 * <pre>   
 *    {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}   
 * </pre>   
 * \par   
 * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.   
 * Samples in the state buffer are stored in the following order.   
 * \par   
 * <pre>   
 *    {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}   
 * </pre>   
 * \par   
 * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.   
 * The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,   
 * to be avoided and yields a significant speed improvement.   
 * The state variables are updated after each block of data is processed; the coefficients are untouched.   
 * \par Instance Structure   
 * The coefficients and state variables for a filter are stored together in an instance data structure.   
 * A separate instance structure must be defined for each filter.   
 * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.   
 * There are separate instance structure declarations for each of the 4 supported data types.   
 *   
 * \par Initialization Functions   
 * There is also an associated initialization function for each data type.   
 * The initialization function performs the following operations:   
 * - Sets the values of the internal structure fields.   
 * - Zeros out the values in the state buffer.   
 *   
 * \par   
 * Use of the initialization function is optional.   
 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.   
 * To place an instance structure into a const data section, the instance structure must be manually initialized.   
 * Set the values in the state buffer to zeros before static initialization.   
 * The code below statically initializes each of the 4 different data type filter instance structures   
 * <pre>   
 *arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};   
 *arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};   
 *arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};   
 *arm_fir_instance_q7 S =  {numTaps, pState, pCoeffs};   
 * </pre>   
 *   
 * where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;   
 * <code>pCoeffs</code> is the address of the coefficient buffer.   
 *   
 * \par Fixed-Point Behavior   
 * Care must be taken when using the fixed-point versions of the FIR filter functions.   
 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.   
 * Refer to the function specific documentation below for usage guidelines.   
 */

/**   
 * @addtogroup FIR   
 * @{   
 */

/**   
 *   
 * @param[in]  *S points to an instance of the floating-point FIR filter structure.   
 * @param[in]  *pSrc points to the block of input data.   
 * @param[out] *pDst points to the block of output data.   
 * @param[in]  blockSize number of samples to process per call.   
 * @return     none.   
 *   
 */

void arm_fir_f32(
  const arm_fir_instance_f32 * S,
  float32_t * pSrc,
  float32_t * pDst,
  uint32_t blockSize)
{

  float32_t *pState = S->pState;                 /* State pointer */
  float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
  float32_t *pStateCurnt;                        /* Points to the current sample of the state */
  float32_t *px, *pb;                            /* Temporary pointers for state and coefficient buffers */
  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
  uint32_t i, tapCnt, blkCnt;                    /* Loop counters */


#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  float32_t acc0, acc1, acc2, acc3;              /* Accumulators */
  float32_t x0, x1, x2, x3, c0;                  /* Temporary variables to hold state and coefficient values */


  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Apply loop unrolling and compute 4 output values simultaneously.   
   * The variables acc0 ... acc3 hold output values that are being computed:   
   *   
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]   
   *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]   
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]   
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]   
   */
  blkCnt = blockSize >> 2;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.   
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* Copy four new input samples into the state buffer */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;

    /* Set all accumulators to zero */
    acc0 = 0.0f;
    acc1 = 0.0f;
    acc2 = 0.0f;
    acc3 = 0.0f;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = (pCoeffs);

    /* Read the first three samples from the state buffer:  x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
    x0 = *px++;
    x1 = *px++;
    x2 = *px++;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2u;

    /* Loop over the number of taps.  Unroll by a factor of 4.   
     ** Repeat until we've computed numTaps-4 coefficients. */
    while(tapCnt > 0u)
    {
      /* Read the b[numTaps-1] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-3] sample */
      x3 = *(px++);

      /* acc0 +=  b[numTaps-1] * x[n-numTaps] */
      acc0 += x0 * c0;

      /* acc1 +=  b[numTaps-1] * x[n-numTaps-1] */
      acc1 += x1 * c0;

      /* acc2 +=  b[numTaps-1] * x[n-numTaps-2] */
      acc2 += x2 * c0;

      /* acc3 +=  b[numTaps-1] * x[n-numTaps-3] */
      acc3 += x3 * c0;

      /* Read the b[numTaps-2] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-4] sample */
      x0 = *(px++);

      /* Perform the multiply-accumulate */
      acc0 += x1 * c0;
      acc1 += x2 * c0;
      acc2 += x3 * c0;
      acc3 += x0 * c0;

      /* Read the b[numTaps-3] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-5] sample */
      x1 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += x2 * c0;
      acc1 += x3 * c0;
      acc2 += x0 * c0;
      acc3 += x1 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-6] sample */
      x2 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += x3 * c0;
      acc1 += x0 * c0;
      acc2 += x1 * c0;
      acc3 += x2 * c0;

      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4u;

    while(tapCnt > 0u)
    {
      /* Read coefficients */
      c0 = *(pb++);

      /* Fetch 1 state variable */
      x3 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += x0 * c0;
      acc1 += x1 * c0;
      acc2 += x2 * c0;
      acc3 += x3 * c0;

      /* Reuse the present sample states for next sample */
      x0 = x1;
      x1 = x2;
      x2 = x3;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Advance the state pointer by 4 to process the next group of 4 samples */
    pState = pState + 4;

    /* The results in the 4 accumulators, store in the destination buffer. */
    *pDst++ = acc0;
    *pDst++ = acc1;
    *pDst++ = acc2;
    *pDst++ = acc3;

    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.   
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4u;

  while(blkCnt > 0u)
  {
    /* Copy one sample at a time into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0.0f;

    /* Initialize state pointer */
    px = pState;

    /* Initialize Coefficient pointer */
    pb = (pCoeffs);

    i = numTaps;

    /* Perform the multiply-accumulates */
    do
    {
      acc0 += *px++ * *pb++;
      i--;

    } while(i > 0u);

    /* The result is store in the destination buffer. */
    *pDst++ = acc0;

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    blkCnt--;
  }

  /* Processing is complete.   
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.   
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  tapCnt = (numTaps - 1u) >> 2u;

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

  /* Calculate remaining number of copies */
  tapCnt = (numTaps - 1u) % 0x4u;

  /* Copy the remaining q31_t data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */

  float32_t acc;

  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Initialize blkCnt with blockSize */
  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
    /* Copy one sample at a time into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc = 0.0f;

    /* Initialize state pointer */
    px = pState;

    /* Initialize Coefficient pointer */
    pb = pCoeffs;

    i = numTaps;

    /* Perform the multiply-accumulates */
    do
    {
      /* acc =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
      acc += *px++ * *pb++;
      i--;

    } while(i > 0u);

    /* The result is store in the destination buffer. */
    *pDst++ = acc;

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    blkCnt--;
  }

  /* Processing is complete.        
   ** Now copy the last numTaps - 1 samples to the starting of the state buffer.      
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Copy numTaps number of values */
  tapCnt = numTaps - 1u;

  /* Copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#endif /*   #ifndef ARM_MATH_CM0 */

}

/**   
 * @} end of FIR group   
 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -