⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
字号:
/* ----------------------------------------------------------------------   
* Copyright (C) 2010 ARM Limited. All rights reserved.   
*   
* $Date:        15. July 2011  
* $Revision: 	V1.0.10  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_iir_lattice_q31.c   
*   
* Description:	Q31 IIR lattice filter processing function.   
*   
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.0.10 2011/7/15 
*    Big Endian support added and Merged M0 and M3/M4 Source code.  
*   
* Version 1.0.3 2010/11/29  
*    Re-organized the CMSIS folders and updated documentation.   
*    
* Version 1.0.2 2010/11/11   
*    Documentation updated.    
*   
* Version 1.0.1 2010/10/05    
*    Production release and review comments incorporated.   
*   
* Version 1.0.0 2010/09/20    
*    Production release and review comments incorporated   
*   
* Version 0.0.7  2010/06/10    
*    Misra-C changes done   
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**   
 * @ingroup groupFilters   
 */

/**   
 * @addtogroup IIR_Lattice   
 * @{   
 */

/**   
 * @brief Processing function for the Q31 IIR lattice filter.   
 * @param[in] *S points to an instance of the Q31 IIR lattice structure.   
 * @param[in] *pSrc points to the block of input data.   
 * @param[out] *pDst points to the block of output data.   
 * @param[in] blockSize number of samples to process.   
 * @return none.   
 *   
 * @details   
 * <b>Scaling and Overflow Behavior:</b>   
 * \par   
 * The function is implemented using an internal 64-bit accumulator.   
 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.   
 * Thus, if the accumulator result overflows it wraps around rather than clip.   
 * In order to avoid overflows completely the input signal must be scaled down by 2*log2(numStages) bits.   
 * After all multiply-accumulates are performed, the 2.62 accumulator is saturated to 1.32 format and then truncated to 1.31 format.   
 */

void arm_iir_lattice_q31(
  const arm_iir_lattice_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pDst,
  uint32_t blockSize)
{
  q31_t fcurr, fnext = 0, gcurr = 0, gnext;      /* Temporary variables for lattice stages */
  q63_t acc;                                     /* Accumlator */
  uint32_t blkCnt, tapCnt;                       /* Temporary variables for counts */
  q31_t *px1, *px2, *pk, *pv;                    /* Temporary pointers for state and coef */
  uint32_t numStages = S->numStages;             /* number of stages */
  q31_t *pState;                                 /* State pointer */
  q31_t *pStateCurnt;                            /* State current pointer */

  blkCnt = blockSize;

  pState = &S->pState[0];


#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  /* Sample processing */
  while(blkCnt > 0u)
  {
    /* Read Sample from input buffer */
    /* fN(n) = x(n) */
    fcurr = *pSrc++;

    /* Initialize state read pointer */
    px1 = pState;
    /* Initialize state write pointer */
    px2 = pState;
    /* Set accumulator to zero */
    acc = 0;
    /* Initialize Ladder coeff pointer */
    pv = &S->pvCoeffs[0];
    /* Initialize Reflection coeff pointer */
    pk = &S->pkCoeffs[0];


    /* Process sample for first tap */
    gcurr = *px1++;
    /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
    fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
    /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
    gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
    /* write gN-1(n-1) into state for next sample processing */
    *px2++ = gnext;
    /* y(n) += gN(n) * vN  */
    acc += ((q63_t) gnext * *pv++);

    /* Update f values for next coefficient processing */
    fcurr = fnext;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = (numStages - 1u) >> 2;

    while(tapCnt > 0u)
    {

      /* Process sample for 2nd, 6th .. taps */
      /* Read gN-2(n-1) from state buffer */
      gcurr = *px1++;
      /* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */
      fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
      /* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */
      gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
      /* y(n) += gN-1(n) * vN-1  */
      /* process for gN-5(n) * vN-5, gN-9(n) * vN-9 ... */
      acc += ((q63_t) gnext * *pv++);
      /* write gN-1(n) into state for next sample processing */
      *px2++ = gnext;

      /* Process sample for 3nd, 7th ...taps */
      /* Read gN-3(n-1) from state buffer */
      gcurr = *px1++;
      /* Process sample for 3rd, 7th .. taps */
      /* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */
      fcurr = __QSUB(fnext, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
      /* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */
      gnext = __QADD(gcurr, (q31_t) (((q63_t) fcurr * (*pk++)) >> 31));
      /* y(n) += gN-2(n) * vN-2  */
      /* process for gN-6(n) * vN-6, gN-10(n) * vN-10 ... */
      acc += ((q63_t) gnext * *pv++);
      /* write gN-2(n) into state for next sample processing */
      *px2++ = gnext;


      /* Process sample for 4th, 8th ...taps */
      /* Read gN-4(n-1) from state buffer */
      gcurr = *px1++;
      /* Process sample for 4th, 8th .. taps */
      /* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */
      fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
      /* gN-3(n) = kN-3 * fN-4(n) + gN-4(n-1) */
      gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
      /* y(n) += gN-3(n) * vN-3  */
      /* process for gN-7(n) * vN-7, gN-11(n) * vN-11 ... */
      acc += ((q63_t) gnext * *pv++);
      /* write gN-3(n) into state for next sample processing */
      *px2++ = gnext;


      /* Process sample for 5th, 9th ...taps */
      /* Read gN-5(n-1) from state buffer */
      gcurr = *px1++;
      /* Process sample for 5th, 9th .. taps */
      /* fN-5(n) = fN-4(n) - kN-4 * gN-1(n-1) */
      fcurr = __QSUB(fnext, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
      /* gN-4(n) = kN-4 * fN-5(n) + gN-5(n-1) */
      gnext = __QADD(gcurr, (q31_t) (((q63_t) fcurr * (*pk++)) >> 31));
      /* y(n) += gN-4(n) * vN-4  */
      /* process for gN-8(n) * vN-8, gN-12(n) * vN-12 ... */
      acc += ((q63_t) gnext * *pv++);
      /* write gN-4(n) into state for next sample processing */
      *px2++ = gnext;

      tapCnt--;

    }

    fnext = fcurr;

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = (numStages - 1u) % 0x4u;

    while(tapCnt > 0u)
    {
      gcurr = *px1++;
      /* Process sample for last taps */
      fnext = __QSUB(fcurr, (q31_t) (((q63_t) gcurr * (*pk)) >> 31));
      gnext = __QADD(gcurr, (q31_t) (((q63_t) fnext * (*pk++)) >> 31));
      /* Output samples for last taps */
      acc += ((q63_t) gnext * *pv++);
      *px2++ = gnext;
      fcurr = fnext;

      tapCnt--;

    }

    /* y(n) += g0(n) * v0 */
    acc += (q63_t) fnext *(
  *pv++);

    *px2++ = fnext;

    /* write out into pDst */
    *pDst++ = (q31_t) (acc >> 31u);

    /* Advance the state pointer by 4 to process the next group of 4 samples */
    pState = pState + 1u;
    blkCnt--;

  }

  /* Processing is complete. Now copy last S->numStages samples to start of the buffer   
     for the preperation of next frame process */

  /* Points to the start of the state buffer */
  pStateCurnt = &S->pState[0];
  pState = &S->pState[blockSize];

  tapCnt = numStages >> 2u;

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;

  }

  /* Calculate remaining number of copies */
  tapCnt = (numStages) % 0x4u;

  /* Copy the remaining q31_t data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  };

#else

  /* Run the below code for Cortex-M0 */
  /* Sample processing */
  while(blkCnt > 0u)
  {
    /* Read Sample from input buffer */
    /* fN(n) = x(n) */
    fcurr = *pSrc++;

    /* Initialize state read pointer */
    px1 = pState;
    /* Initialize state write pointer */
    px2 = pState;
    /* Set accumulator to zero */
    acc = 0;
    /* Initialize Ladder coeff pointer */
    pv = &S->pvCoeffs[0];
    /* Initialize Reflection coeff pointer */
    pk = &S->pkCoeffs[0];

    tapCnt = numStages;

    while(tapCnt > 0u)
    {
      gcurr = *px1++;
      /* Process sample */
      /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
      fnext =
        clip_q63_to_q31(((q63_t) fcurr -
                         ((q31_t) (((q63_t) gcurr * (*pk)) >> 31))));
      /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
      gnext =
        clip_q63_to_q31(((q63_t) gcurr +
                         ((q31_t) (((q63_t) fnext * (*pk++)) >> 31))));
      /* Output samples */
      /* y(n) += gN(n) * vN  */
      acc += ((q63_t) gnext * *pv++);
      /* write gN-1(n-1) into state for next sample processing */
      *px2++ = gnext;
      /* Update f values for next coefficient processing */
      fcurr = fnext;

      tapCnt--;
    }

    /* y(n) += g0(n) * v0 */
    acc += (q63_t) fnext *(
  *pv++);

    *px2++ = fnext;

    /* write out into pDst */
    *pDst++ = (q31_t) (acc >> 31u);

    /* Advance the state pointer by 1 to process the next group of samples */
    pState = pState + 1u;
    blkCnt--;

  }

  /* Processing is complete. Now copy last S->numStages samples to start of the buffer          
     for the preperation of next frame process */

  /* Points to the start of the state buffer */
  pStateCurnt = &S->pState[0];
  pState = &S->pState[blockSize];

  tapCnt = numStages;

  /* Copy the remaining q31_t data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#endif /*   #ifndef ARM_MATH_CM0 */

}




/**   
 * @} end of IIR_Lattice group   
 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -