⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
字号:
/* ----------------------------------------------------------------------   
* Copyright (C) 2010 ARM Limited. All rights reserved.   
*   
* $Date:        15. July 2011  
* $Revision: 	V1.0.10  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_mat_mult_fast_q31.c   
*   
* Description:	 Q31 matrix multiplication (fast variant).   
*   
* Target Processor: Cortex-M4/Cortex-M3
*  
* Version 1.0.10 2011/7/15 
*    Big Endian support added and Merged M0 and M3/M4 Source code.  
*   
* Version 1.0.3 2010/11/29  
*    Re-organized the CMSIS folders and updated documentation.   
*    
* Version 1.0.2 2010/11/11   
*    Documentation updated.    
*   
* Version 1.0.1 2010/10/05    
*    Production release and review comments incorporated.   
*   
* Version 1.0.0 2010/09/20    
*    Production release and review comments incorporated.   
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**   
 * @ingroup groupMatrix   
 */

/**   
 * @addtogroup MatrixMult   
 * @{   
 */

/**   
 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4   
 * @param[in]       *pSrcA points to the first input matrix structure   
 * @param[in]       *pSrcB points to the second input matrix structure   
 * @param[out]      *pDst points to output matrix structure   
 * @return     		The function returns either   
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.   
 *   
 * @details   
 * <b>Scaling and Overflow Behavior:</b>   
 *   
 * \par   
 * The difference between the function arm_mat_mult_q31() and this fast variant is that   
 * the fast variant use a 32-bit rather than a 64-bit accumulator.   
 * The result of each 1.31 x 1.31 multiplication is truncated to   
 * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30   
 * format. Finally, the accumulator is saturated and converted to a 1.31 result.   
 *   
 * \par   
 * The fast version has the same overflow behavior as the standard version but provides   
 * less precision since it discards the low 32 bits of each multiplication result.   
 * In order to avoid overflows completely the input signals must be scaled down.   
 * Scale down one of the input matrices by log2(numColsA) bits to   
 * avoid overflows, as a total of numColsA additions are computed internally for each   
 * output element.   
 *   
 * \par   
 * See <code>arm_mat_mult_q31()</code> for a slower implementation of this function   
 * which uses 64-bit accumulation to provide higher precision.   
 */

arm_status arm_mat_mult_fast_q31(
  const arm_matrix_instance_q31 * pSrcA,
  const arm_matrix_instance_q31 * pSrcB,
  arm_matrix_instance_q31 * pDst)
{
  q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
  q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
//  q31_t *pSrcB = pSrcB->pData;                    /* input data matrix pointer B */   
  q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
  q31_t *px;                                     /* Temporary output data matrix pointer */
  q31_t sum;                                     /* Accumulator */
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
  uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
  arm_status status;                             /* status of matrix multiplication */


#ifdef ARM_MATH_MATRIX_CHECK


  /* Check for matrix mismatch condition */
  if((pSrcA->numCols != pSrcB->numRows) ||
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */

  {
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* row loop */
    do
    {
      /* Output pointer is set to starting address of the row being processed */
      px = pOut + i;

      /* For every row wise process, the column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, the pIn2 pointer is set   
       ** to the starting address of the pSrcB data */
      pIn2 = pSrcB->pData;

      j = 0u;

      /* column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum = 0;

        /* Initiate the pointer pIn1 to point to the starting address of pInA */
        pIn1 = pInA;

        /* Apply loop unrolling and compute 4 MACs simultaneously. */
        colCnt = numColsA >> 2;


        /* matrix multiplication */
        while(colCnt > 0u)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
          /* Perform the multiply-accumulates */
          sum = (q31_t) ((((q63_t) sum << 32) +
                          ((q63_t) * pIn1++ * (*pIn2))) >> 32);
          pIn2 += numColsB;
          sum = (q31_t) ((((q63_t) sum << 32) +
                          ((q63_t) * pIn1++ * (*pIn2))) >> 32);
          pIn2 += numColsB;
          sum = (q31_t) ((((q63_t) sum << 32) +
                          ((q63_t) * pIn1++ * (*pIn2))) >> 32);
          pIn2 += numColsB;
          sum = (q31_t) ((((q63_t) sum << 32) +
                          ((q63_t) * pIn1++ * (*pIn2))) >> 32);
          pIn2 += numColsB;

          /* Decrement the loop counter */
          colCnt--;
        }

        /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.   
         ** No loop unrolling is used. */
        colCnt = numColsA % 0x4u;

        while(colCnt > 0u)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
          /* Perform the multiply-accumulates */
          sum = (q31_t) ((((q63_t) sum << 32) +
                          ((q63_t) * pIn1++ * (*pIn2))) >> 32);
          pIn2 += numColsB;

          /* Decrement the loop counter */
          colCnt--;
        }

        /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
        *px++ = sum << 1;

        /* Update the pointer pIn2 to point to the  starting address of the next column */
        j++;
        pIn2 = pSrcB->pData + j;

        /* Decrement the column loop counter */
        col--;

      } while(col > 0u);

      /* Update the pointer pInA to point to the  starting address of the next row */
      i = i + numColsB;
      pInA = pInA + numColsA;

      /* Decrement the row loop counter */
      row--;

    } while(row > 0u);

    /* set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }
  /* Return to application */
  return (status);
}

/**   
 * @} end of MatrixMult group   
 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -