⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
📖 第 1 页 / 共 2 页
字号:

          pInT2 += numCols;
        }
        else
        {
          /* Element of the reference row */
          in = *pInT1;

          /* Working pointers for input and destination pivot rows */
          pPRT_in = pPivotRowIn;
          pPRT_pDst = pPivotRowDst;

          /* Loop over the number of columns to the right of the pivot element,   
             to replace the elements in the input matrix */
          j = (numCols - l);

          while(j > 0u)
          {
            /* Replace the element by the sum of that row   
               and a multiple of the reference row  */
            in1 = *pInT1;
            *pInT1++ = in1 - (in * *pPRT_in++);

            /* Decrement the loop counter */
            j--;
          }

          /* Loop over the number of columns to   
             replace the elements in the destination matrix */
          j = numCols;

          while(j > 0u)
          {
            /* Replace the element by the sum of that row   
               and a multiple of the reference row  */
            in1 = *pInT2;
            *pInT2++ = in1 - (in * *pPRT_pDst++);

            /* Decrement the loop counter */
            j--;
          }

        }

        /* Increment the temporary input pointer */
        pInT1 = pInT1 + l;

        /* Decrement the loop counter */
        k--;

        /* Increment the pivot index */
        i++;
      }

      /* Increment the input pointer */
      pIn++;

      /* Decrement the loop counter */
      loopCnt--;

      /* Increment the index modifier */
      l++;
    }


#else

  /* Run the below code for Cortex-M0 */

  float32_t Xchg, in = 0.0f;                     /* Temporary input values  */
  uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l;      /* loop counters */
  arm_status status;                             /* status of matrix inverse */

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
     || (pSrc->numRows != pDst->numRows))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
  {

    /*--------------------------------------------------------------------------------------------------------------      
	 * Matrix Inverse can be solved using elementary row operations.       
	 *       
	 *	Gauss-Jordan Method:      
	 *	 	      
	 *	   1. First combine the identity matrix and the input matrix separated by a bar to form an       
	 *        augmented matrix as follows:       
	 *				        _  _	      _	    _	   _   _         _	       _      
	 *					   |  |  a11  a12  | | | 1   0  |   |       |  X11 X12  |        
	 *					   |  |            | | |        |   |   =   |           |       
	 *					   |_ |_ a21  a22 _| | |_0   1 _|  _|       |_ X21 X21 _|      
	 *					         
	 *		2. In our implementation, pDst Matrix is used as identity matrix.   
	 *      
	 *		3. Begin with the first row. Let i = 1.      
	 *      
	 *	    4. Check to see if the pivot for row i is zero.      
	 *		   The pivot is the element of the main diagonal that is on the current row.      
	 *		   For instance, if working with row i, then the pivot element is aii.      
	 *		   If the pivot is zero, exchange that row with a row below it that does not       
	 *		   contain a zero in column i. If this is not possible, then an inverse       
	 *		   to that matrix does not exist.      
	 *	      
	 *	    5. Divide every element of row i by the pivot.      
	 *	      
	 *	    6. For every row below and  row i, replace that row with the sum of that row and       
	 *		   a multiple of row i so that each new element in column i below row i is zero.      
	 *	      
	 *	    7. Move to the next row and column and repeat steps 2 through 5 until you have zeros      
	 *		   for every element below and above the main diagonal.       
	 *		   		         
	 *		8. Now an identical matrix is formed to the left of the bar(input matrix, src).      
	 *		   Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).        
	 *----------------------------------------------------------------------------------------------------------------*/

    /* Working pointer for destination matrix */
    pInT2 = pOut;

    /* Loop over the number of rows */
    rowCnt = numRows;

    /* Making the destination matrix as identity matrix */
    while(rowCnt > 0u)
    {
      /* Writing all zeroes in lower triangle of the destination matrix */
      j = numRows - rowCnt;
      while(j > 0u)
      {
        *pInT2++ = 0.0f;
        j--;
      }

      /* Writing all ones in the diagonal of the destination matrix */
      *pInT2++ = 1.0f;

      /* Writing all zeroes in upper triangle of the destination matrix */
      j = rowCnt - 1u;
      while(j > 0u)
      {
        *pInT2++ = 0.0f;
        j--;
      }

      /* Decrement the loop counter */
      rowCnt--;
    }

    /* Loop over the number of columns of the input matrix.    
       All the elements in each column are processed by the row operations */
    loopCnt = numCols;

    /* Index modifier to navigate through the columns */
    l = 0u;
    //for(loopCnt = 0u; loopCnt < numCols; loopCnt++)  
    while(loopCnt > 0u)
    {
      /* Check if the pivot element is zero..   
       * If it is zero then interchange the row with non zero row below.  
       * If there is no non zero element to replace in the rows below,  
       * then the matrix is Singular. */

      /* Working pointer for the input matrix that points    
       * to the pivot element of the particular row  */
      pInT1 = pIn + (l * numCols);

      /* Working pointer for the destination matrix that points    
       * to the pivot element of the particular row  */
      pInT3 = pOut + (l * numCols);

      /* Temporary variable to hold the pivot value */
      in = *pInT1;

      /* Destination pointer modifier */
      k = 1u;

      /* Check if the pivot element is zero */
      if(*pInT1 == 0.0f)
      {
        /* Loop over the number rows present below */
        for (i = (l + 1u); i < numRows; i++)
        {
          /* Update the input and destination pointers */
          pInT2 = pInT1 + (numCols * l);
          pInT4 = pInT3 + (numCols * k);

          /* Check if there is a non zero pivot element to    
           * replace in the rows below */
          if(*pInT2 != 0.0f)
          {
            /* Loop over number of columns    
             * to the right of the pilot element */
            for (j = 0u; j < (numCols - l); j++)
            {
              /* Exchange the row elements of the input matrix */
              Xchg = *pInT2;
              *pInT2++ = *pInT1;
              *pInT1++ = Xchg;
            }

            for (j = 0u; j < numCols; j++)
            {
              Xchg = *pInT4;
              *pInT4++ = *pInT3;
              *pInT3++ = Xchg;
            }

            /* Flag to indicate whether exchange is done or not */
            flag = 1u;

            /* Break after exchange is done */
            break;
          }

          /* Update the destination pointer modifier */
          k++;
        }
      }

      /* Update the status if the matrix is singular */
      if((flag != 1u) && (in == 0.0f))
      {
        status = ARM_MATH_SINGULAR;

        break;
      }

      /* Points to the pivot row of input and destination matrices */
      pPivotRowIn = pIn + (l * numCols);
      pPivotRowDst = pOut + (l * numCols);

      /* Temporary pointers to the pivot row pointers */
      pInT1 = pPivotRowIn;
      pInT2 = pPivotRowDst;

      /* Pivot element of the row */
      in = *(pIn + (l * numCols));

      /* Loop over number of columns    
       * to the right of the pilot element */
      for (j = 0u; j < (numCols - l); j++)
      {
        /* Divide each element of the row of the input matrix    
         * by the pivot element */
        *pInT1++ = *pInT1 / in;
      }
      for (j = 0u; j < numCols; j++)
      {
        /* Divide each element of the row of the destination matrix    
         * by the pivot element */
        *pInT2++ = *pInT2 / in;
      }

      /* Replace the rows with the sum of that row and a multiple of row i    
       * so that each new element in column i above row i is zero.*/

      /* Temporary pointers for input and destination matrices */
      pInT1 = pIn;
      pInT2 = pOut;

      for (i = 0u; i < numRows; i++)
      {
        /* Check for the pivot element */
        if(i == l)
        {
          /* If the processing element is the pivot element,    
             only the columns to the right are to be processed */
          pInT1 += numCols - l;
          pInT2 += numCols;
        }
        else
        {
          /* Element of the reference row */
          in = *pInT1;

          /* Working pointers for input and destination pivot rows */
          pPRT_in = pPivotRowIn;
          pPRT_pDst = pPivotRowDst;

          /* Loop over the number of columns to the right of the pivot element,    
             to replace the elements in the input matrix */
          for (j = 0u; j < (numCols - l); j++)
          {
            /* Replace the element by the sum of that row    
               and a multiple of the reference row  */
            *pInT1++ = *pInT1 - (in * *pPRT_in++);
          }
          /* Loop over the number of columns to    
             replace the elements in the destination matrix */
          for (j = 0u; j < numCols; j++)
          {
            /* Replace the element by the sum of that row    
               and a multiple of the reference row  */
            *pInT2++ = *pInT2 - (in * *pPRT_pDst++);
          }

        }
        /* Increment the temporary input pointer */
        pInT1 = pInT1 + l;
      }
      /* Increment the input pointer */
      pIn++;

      /* Decrement the loop counter */
      loopCnt--;
      /* Increment the index modifier */
      l++;
    }


#endif /* #ifndef ARM_MATH_CM0 */

    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;

    if((flag != 1u) && (in == 0.0f))
    {
      status = ARM_MATH_SINGULAR;
    }
  }
  /* Return to application */
  return (status);
}

/**   
 * @} end of MatrixInv group   
 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -