⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
📖 第 1 页 / 共 2 页
字号:
/* ----------------------------------------------------------------------   
* Copyright (C) 2010 ARM Limited. All rights reserved.   
*   
* $Date:        15. July 2011  
* $Revision: 	V1.0.10  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_mat_inverse_f32.c   
*   
* Description:	Floating-point matrix inverse.   
*   
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.0.10 2011/7/15 
*    Big Endian support added and Merged M0 and M3/M4 Source code.  
*   
* Version 1.0.3 2010/11/29  
*    Re-organized the CMSIS folders and updated documentation.   
*    
* Version 1.0.2 2010/11/11   
*    Documentation updated.    
*   
* Version 1.0.1 2010/10/05    
*    Production release and review comments incorporated.   
*   
* Version 1.0.0 2010/09/20    
*    Production release and review comments incorporated.   
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**   
 * @ingroup groupMatrix   
 */

/**   
 * @defgroup MatrixInv Matrix Inverse   
 *   
 * Computes the inverse of a matrix.   
 *   
 * The inverse is defined only if the input matrix is square and non-singular (the determinant   
 * is non-zero). The function checks that the input and output matrices are square and of the   
 * same size.   
 *   
 * Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix   
 * inversion of floating-point matrices.   
 *   
 * \par Algorithm   
 * The Gauss-Jordan method is used to find the inverse.   
 * The algorithm performs a sequence of elementary row-operations till it   
 * reduces the input matrix to an identity matrix. Applying the same sequence   
 * of elementary row-operations to an identity matrix yields the inverse matrix.   
 * If the input matrix is singular, then the algorithm terminates and returns error status   
 * <code>ARM_MATH_SINGULAR</code>.   
 * \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"   
 */

/**   
 * @addtogroup MatrixInv   
 * @{   
 */

/**   
 * @brief Floating-point matrix inverse.   
 * @param[in]       *pSrc points to input matrix structure   
 * @param[out]      *pDst points to output matrix structure   
 * @return     		The function returns   
 * <code>ARM_MATH_SIZE_MISMATCH</code> if the input matrix is not square or if the size   
 * of the output matrix does not match the size of the input matrix.   
 * If the input matrix is found to be singular (non-invertible), then the function returns   
 * <code>ARM_MATH_SINGULAR</code>.  Otherwise, the function returns <code>ARM_MATH_SUCCESS</code>.   
 */

arm_status arm_mat_inverse_f32(
  const arm_matrix_instance_f32 * pSrc,
  arm_matrix_instance_f32 * pDst)
{
  float32_t *pIn = pSrc->pData;                  /* input data matrix pointer */
  float32_t *pOut = pDst->pData;                 /* output data matrix pointer */
  float32_t *pInT1, *pInT2;                      /* Temporary input data matrix pointer */
  float32_t *pInT3, *pInT4;                      /* Temporary output data matrix pointer */
  float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst;  /* Temporary input and output data matrix pointer */
  uint32_t numRows = pSrc->numRows;              /* Number of rows in the matrix  */
  uint32_t numCols = pSrc->numCols;              /* Number of Cols in the matrix  */

#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  float32_t Xchg, in = 0.0f, in1;                /* Temporary input values  */
  uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l;      /* loop counters */
  arm_status status;                             /* status of matrix inverse */

#ifdef ARM_MATH_MATRIX_CHECK


  /* Check for matrix mismatch condition */
  if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
     || (pSrc->numRows != pDst->numRows))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */

  {

    /*--------------------------------------------------------------------------------------------------------------   
	 * Matrix Inverse can be solved using elementary row operations.   
	 *   
	 *	Gauss-Jordan Method:   
	 *   
	 *	   1. First combine the identity matrix and the input matrix separated by a bar to form an   
	 *        augmented matrix as follows:   
	 *				        _ 	      	       _         _	       _   
	 *					   |  a11  a12 | 1   0  |       |  X11 X12  |   
	 *					   |           |        |   =   |           |   
	 *					   |_ a21  a22 | 0   1 _|       |_ X21 X21 _|   
	 *   
	 *		2. In our implementation, pDst Matrix is used as identity matrix.   
	 *   
	 *		3. Begin with the first row. Let i = 1.   
	 *   
	 *	    4. Check to see if the pivot for row i is zero.   
	 *		   The pivot is the element of the main diagonal that is on the current row.   
	 *		   For instance, if working with row i, then the pivot element is aii.   
	 *		   If the pivot is zero, exchange that row with a row below it that does not   
	 *		   contain a zero in column i. If this is not possible, then an inverse   
	 *		   to that matrix does not exist.   
	 *   
	 *	    5. Divide every element of row i by the pivot.   
	 *   
	 *	    6. For every row below and  row i, replace that row with the sum of that row and   
	 *		   a multiple of row i so that each new element in column i below row i is zero.   
	 *   
	 *	    7. Move to the next row and column and repeat steps 2 through 5 until you have zeros   
	 *		   for every element below and above the main diagonal.   
	 *   
	 *		8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).   
	 *		   Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).   
	 *----------------------------------------------------------------------------------------------------------------*/

    /* Working pointer for destination matrix */
    pInT2 = pOut;

    /* Loop over the number of rows */
    rowCnt = numRows;

    /* Making the destination matrix as identity matrix */
    while(rowCnt > 0u)
    {
      /* Writing all zeroes in lower triangle of the destination matrix */
      j = numRows - rowCnt;
      while(j > 0u)
      {
        *pInT2++ = 0.0f;
        j--;
      }

      /* Writing all ones in the diagonal of the destination matrix */
      *pInT2++ = 1.0f;

      /* Writing all zeroes in upper triangle of the destination matrix */
      j = rowCnt - 1u;
      while(j > 0u)
      {
        *pInT2++ = 0.0f;
        j--;
      }

      /* Decrement the loop counter */
      rowCnt--;
    }

    /* Loop over the number of columns of the input matrix.   
       All the elements in each column are processed by the row operations */
    loopCnt = numCols;

    /* Index modifier to navigate through the columns */
    l = 0u;

    while(loopCnt > 0u)
    {
      /* Check if the pivot element is zero..   
       * If it is zero then interchange the row with non zero row below.   
       * If there is no non zero element to replace in the rows below,   
       * then the matrix is Singular. */

      /* Working pointer for the input matrix that points   
       * to the pivot element of the particular row  */
      pInT1 = pIn + (l * numCols);

      /* Working pointer for the destination matrix that points   
       * to the pivot element of the particular row  */
      pInT3 = pOut + (l * numCols);

      /* Temporary variable to hold the pivot value */
      in = *pInT1;

      /* Destination pointer modifier */
      k = 1u;

      /* Check if the pivot element is zero */
      if(*pInT1 == 0.0f)
      {
        /* Loop over the number rows present below */
        i = numRows - (l + 1u);

        while(i > 0u)
        {
          /* Update the input and destination pointers */
          pInT2 = pInT1 + (numCols * l);
          pInT4 = pInT3 + (numCols * k);

          /* Check if there is a non zero pivot element to   
           * replace in the rows below */
          if(*pInT2 != 0.0f)
          {
            /* Loop over number of columns   
             * to the right of the pilot element */
            j = numCols - l;

            while(j > 0u)
            {
              /* Exchange the row elements of the input matrix */
              Xchg = *pInT2;
              *pInT2++ = *pInT1;
              *pInT1++ = Xchg;

              /* Decrement the loop counter */
              j--;
            }

            /* Loop over number of columns of the destination matrix */
            j = numCols;

            while(j > 0u)
            {
              /* Exchange the row elements of the destination matrix */
              Xchg = *pInT4;
              *pInT4++ = *pInT3;
              *pInT3++ = Xchg;

              /* Decrement the loop counter */
              j--;
            }

            /* Flag to indicate whether exchange is done or not */
            flag = 1u;

            /* Break after exchange is done */
            break;
          }

          /* Update the destination pointer modifier */
          k++;

          /* Decrement the loop counter */
          i--;
        }
      }

      /* Update the status if the matrix is singular */
      if((flag != 1u) && (in == 0.0f))
      {
        status = ARM_MATH_SINGULAR;

        break;
      }

      /* Points to the pivot row of input and destination matrices */
      pPivotRowIn = pIn + (l * numCols);
      pPivotRowDst = pOut + (l * numCols);

      /* Temporary pointers to the pivot row pointers */
      pInT1 = pPivotRowIn;
      pInT2 = pPivotRowDst;

      /* Pivot element of the row */
      in = *(pIn + (l * numCols));

      /* Loop over number of columns   
       * to the right of the pilot element */
      j = (numCols - l);

      while(j > 0u)
      {
        /* Divide each element of the row of the input matrix   
         * by the pivot element */
        in1 = *pInT1;
        *pInT1++ = in1 / in;

        /* Decrement the loop counter */
        j--;
      }

      /* Loop over number of columns of the destination matrix */
      j = numCols;

      while(j > 0u)
      {
        /* Divide each element of the row of the destination matrix   
         * by the pivot element */
        in1 = *pInT2;
        *pInT2++ = in1 / in;

        /* Decrement the loop counter */
        j--;
      }

      /* Replace the rows with the sum of that row and a multiple of row i   
       * so that each new element in column i above row i is zero.*/

      /* Temporary pointers for input and destination matrices */
      pInT1 = pIn;
      pInT2 = pOut;

      /* index used to check for pivot element */
      i = 0u;

      /* Loop over number of rows */
      /*  to be replaced by the sum of that row and a multiple of row i */
      k = numRows;

      while(k > 0u)
      {
        /* Check for the pivot element */
        if(i == l)
        {
          /* If the processing element is the pivot element,   
             only the columns to the right are to be processed */
          pInT1 += numCols - l;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -