📄 k60-keil
字号:
-0.999847695156391270f, -1.000000000000000000f
};
/**
* \par
* Sine Table is generated from following loop
* <pre>for(i = 0; i < 360; i++)
* {
* sinTable[i]= sin((i-180) * PI/180.0);
* } </pre>
*/
static const float32_t sinTable[360] = {
-0.017452406437283439f, -0.034899496702500699f, -0.052335956242943807f,
-0.069756473744125524f, -0.087155742747658638f, -0.104528463267653730f,
-0.121869343405147550f, -0.139173100960065740f,
-0.156434465040230980f, -0.173648177666930280f, -0.190808995376544970f,
-0.207911690817759310f, -0.224951054343864780f, -0.241921895599667730f,
-0.258819045102521020f, -0.275637355816999660f,
-0.292371704722737050f, -0.309016994374947510f, -0.325568154457156980f,
-0.342020143325668880f, -0.358367949545300210f, -0.374606593415912240f,
-0.390731128489274160f, -0.406736643075800430f,
-0.422618261740699500f, -0.438371146789077290f, -0.453990499739546860f,
-0.469471562785891080f, -0.484809620246337170f, -0.499999999999999940f,
-0.515038074910054380f, -0.529919264233204900f,
-0.544639035015026860f, -0.559192903470746900f, -0.573576436351046380f,
-0.587785252292473250f, -0.601815023152048160f, -0.615661475325658400f,
-0.629320391049837720f, -0.642787609686539470f,
-0.656059028990507280f, -0.669130606358858350f, -0.681998360062498590f,
-0.694658370458997140f, -0.707106781186547570f, -0.719339800338651410f,
-0.731353701619170570f, -0.743144825477394240f,
-0.754709580222771790f, -0.766044443118978010f, -0.777145961456971010f,
-0.788010753606722010f, -0.798635510047292720f, -0.809016994374947450f,
-0.819152044288992020f, -0.829037572555041740f,
-0.838670567945424050f, -0.848048096156426070f, -0.857167300702112330f,
-0.866025403784438710f, -0.874619707139395850f, -0.882947592858927100f,
-0.891006524188367900f, -0.898794046299166930f,
-0.906307787036650050f, -0.913545457642600980f, -0.920504853452440370f,
-0.927183854566787420f, -0.933580426497201740f, -0.939692620785908430f,
-0.945518575599316850f, -0.951056516295153640f,
-0.956304755963035550f, -0.961261695938318890f, -0.965925826289068310f,
-0.970295726275996470f, -0.974370064785235250f, -0.978147600733805690f,
-0.981627183447663980f, -0.984807753012208020f,
-0.987688340595137660f, -0.990268068741570360f, -0.992546151641322090f,
-0.994521895368273400f, -0.996194698091745550f, -0.997564050259824200f,
-0.998629534754573830f, -0.999390827019095760f,
-0.999847695156391270f, -1.000000000000000000f, -0.999847695156391270f,
-0.999390827019095760f, -0.998629534754573830f, -0.997564050259824200f,
-0.996194698091745550f, -0.994521895368273290f,
-0.992546151641321980f, -0.990268068741570250f, -0.987688340595137770f,
-0.984807753012208020f, -0.981627183447663980f, -0.978147600733805580f,
-0.974370064785235250f, -0.970295726275996470f,
-0.965925826289068310f, -0.961261695938318890f, -0.956304755963035440f,
-0.951056516295153530f, -0.945518575599316740f, -0.939692620785908320f,
-0.933580426497201740f, -0.927183854566787420f,
-0.920504853452440260f, -0.913545457642600870f, -0.906307787036649940f,
-0.898794046299167040f, -0.891006524188367790f, -0.882947592858926880f,
-0.874619707139395740f, -0.866025403784438600f,
-0.857167300702112220f, -0.848048096156426070f, -0.838670567945423940f,
-0.829037572555041740f, -0.819152044288991800f, -0.809016994374947450f,
-0.798635510047292830f, -0.788010753606722010f,
-0.777145961456970790f, -0.766044443118978010f, -0.754709580222772010f,
-0.743144825477394240f, -0.731353701619170460f, -0.719339800338651080f,
-0.707106781186547460f, -0.694658370458997250f,
-0.681998360062498480f, -0.669130606358858240f, -0.656059028990507160f,
-0.642787609686539250f, -0.629320391049837390f, -0.615661475325658180f,
-0.601815023152048270f, -0.587785252292473140f,
-0.573576436351046050f, -0.559192903470746900f, -0.544639035015027080f,
-0.529919264233204900f, -0.515038074910054160f, -0.499999999999999940f,
-0.484809620246337060f, -0.469471562785890810f,
-0.453990499739546750f, -0.438371146789077400f, -0.422618261740699440f,
-0.406736643075800150f, -0.390731128489273720f, -0.374606593415912010f,
-0.358367949545300270f, -0.342020143325668710f,
-0.325568154457156640f, -0.309016994374947400f, -0.292371704722736770f,
-0.275637355816999160f, -0.258819045102520740f, -0.241921895599667730f,
-0.224951054343865000f, -0.207911690817759310f,
-0.190808995376544800f, -0.173648177666930330f, -0.156434465040230870f,
-0.139173100960065440f, -0.121869343405147480f, -0.104528463267653460f,
-0.087155742747658166f, -0.069756473744125302f,
-0.052335956242943828f, -0.034899496702500969f, -0.017452406437283512f,
0.000000000000000000f, 0.017452406437283512f, 0.034899496702500969f,
0.052335956242943828f, 0.069756473744125302f,
0.087155742747658166f, 0.104528463267653460f, 0.121869343405147480f,
0.139173100960065440f, 0.156434465040230870f, 0.173648177666930330f,
0.190808995376544800f, 0.207911690817759310f,
0.224951054343865000f, 0.241921895599667730f, 0.258819045102520740f,
0.275637355816999160f, 0.292371704722736770f, 0.309016994374947400f,
0.325568154457156640f, 0.342020143325668710f,
0.358367949545300270f, 0.374606593415912010f, 0.390731128489273720f,
0.406736643075800150f, 0.422618261740699440f, 0.438371146789077400f,
0.453990499739546750f, 0.469471562785890810f,
0.484809620246337060f, 0.499999999999999940f, 0.515038074910054160f,
0.529919264233204900f, 0.544639035015027080f, 0.559192903470746900f,
0.573576436351046050f, 0.587785252292473140f,
0.601815023152048270f, 0.615661475325658180f, 0.629320391049837390f,
0.642787609686539250f, 0.656059028990507160f, 0.669130606358858240f,
0.681998360062498480f, 0.694658370458997250f,
0.707106781186547460f, 0.719339800338651080f, 0.731353701619170460f,
0.743144825477394240f, 0.754709580222772010f, 0.766044443118978010f,
0.777145961456970790f, 0.788010753606722010f,
0.798635510047292830f, 0.809016994374947450f, 0.819152044288991800f,
0.829037572555041740f, 0.838670567945423940f, 0.848048096156426070f,
0.857167300702112220f, 0.866025403784438600f,
0.874619707139395740f, 0.882947592858926880f, 0.891006524188367790f,
0.898794046299167040f, 0.906307787036649940f, 0.913545457642600870f,
0.920504853452440260f, 0.927183854566787420f,
0.933580426497201740f, 0.939692620785908320f, 0.945518575599316740f,
0.951056516295153530f, 0.956304755963035440f, 0.961261695938318890f,
0.965925826289068310f, 0.970295726275996470f,
0.974370064785235250f, 0.978147600733805580f, 0.981627183447663980f,
0.984807753012208020f, 0.987688340595137770f, 0.990268068741570250f,
0.992546151641321980f, 0.994521895368273290f,
0.996194698091745550f, 0.997564050259824200f, 0.998629534754573830f,
0.999390827019095760f, 0.999847695156391270f, 1.000000000000000000f,
0.999847695156391270f, 0.999390827019095760f,
0.998629534754573830f, 0.997564050259824200f, 0.996194698091745550f,
0.994521895368273400f, 0.992546151641322090f, 0.990268068741570360f,
0.987688340595137660f, 0.984807753012208020f,
0.981627183447663980f, 0.978147600733805690f, 0.974370064785235250f,
0.970295726275996470f, 0.965925826289068310f, 0.961261695938318890f,
0.956304755963035550f, 0.951056516295153640f,
0.945518575599316850f, 0.939692620785908430f, 0.933580426497201740f,
0.927183854566787420f, 0.920504853452440370f, 0.913545457642600980f,
0.906307787036650050f, 0.898794046299166930f,
0.891006524188367900f, 0.882947592858927100f, 0.874619707139395850f,
0.866025403784438710f, 0.857167300702112330f, 0.848048096156426070f,
0.838670567945424050f, 0.829037572555041740f,
0.819152044288992020f, 0.809016994374947450f, 0.798635510047292720f,
0.788010753606722010f, 0.777145961456971010f, 0.766044443118978010f,
0.754709580222771790f, 0.743144825477394240f,
0.731353701619170570f, 0.719339800338651410f, 0.707106781186547570f,
0.694658370458997140f, 0.681998360062498590f, 0.669130606358858350f,
0.656059028990507280f, 0.642787609686539470f,
0.629320391049837720f, 0.615661475325658400f, 0.601815023152048160f,
0.587785252292473250f, 0.573576436351046380f, 0.559192903470746900f,
0.544639035015026860f, 0.529919264233204900f,
0.515038074910054380f, 0.499999999999999940f, 0.484809620246337170f,
0.469471562785891080f, 0.453990499739546860f, 0.438371146789077290f,
0.422618261740699500f, 0.406736643075800430f,
0.390731128489274160f, 0.374606593415912240f, 0.358367949545300210f,
0.342020143325668880f, 0.325568154457156980f, 0.309016994374947510f,
0.292371704722737050f, 0.275637355816999660f,
0.258819045102521020f, 0.241921895599667730f, 0.224951054343864780f,
0.207911690817759310f, 0.190808995376544970f, 0.173648177666930280f,
0.156434465040230980f, 0.139173100960065740f,
0.121869343405147550f, 0.104528463267653730f, 0.087155742747658638f,
0.069756473744125524f, 0.052335956242943807f, 0.034899496702500699f,
0.017452406437283439f, 0.000000000000000122f
};
/**
* @brief Floating-point sin_cos function.
* @param[in] theta input value in degrees
* @param[out] *pSinVal points to the processed sine output.
* @param[out] *pCosVal points to the processed cos output.
* @return none.
*/
void arm_sin_cos_f32(
float32_t theta,
float32_t * pSinVal,
float32_t * pCosVal)
{
uint32_t i; /* Index for reading nearwst output values */
float32_t x1 = -179.0f; /* Initial input value */
float32_t y0, y1; /* nearest output values */
float32_t fract; /* fractional part of input */
/* Calculation of fractional part */
if(theta > 0.0f)
{
fract = theta - (float32_t) ((int32_t) theta);
}
else
{
fract = (theta - (float32_t) ((int32_t) theta)) + 1.0f;
}
/* index calculation for reading nearest output values */
i = (uint32_t) (theta - x1);
/* reading nearest sine output values */
y0 = sinTable[i];
y1 = sinTable[i + 1u];
/* Calculation of sine value */
*pSinVal = y0 + (fract * (y1 - y0));
/* reading nearest cosine output values */
y0 = cosTable[i];
y1 = cosTable[i + 1u];
/* Calculation of cosine value */
*pCosVal = y0 + (fract * (y1 - y0));
}
/**
* @} end of SinCos group
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -