⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k60-keil

📁 K60-Keil版本(下载安装MDK4.23)
💻
📖 第 1 页 / 共 4 页
字号:
    /* xb' = (xa+yb-xc-yd) */
    /* yb' = (ya-xb-yc+xd) */
    pSrc16[i2 * 2u] = (S0 >> 1u) + (T1 >> 1u);
    pSrc16[(i2 * 2u) + 1u] = (S1 >> 1u) - (T0 >> 1u);

    /*  writing the butterfly processed i0 + 3fftLen/4 sample */
    /* xd' = (xa-yb-xc+yd) */
    /* yd' = (ya+xb-yc-xd) */
    pSrc16[i3 * 2u] = (S0 >> 1u) - (T1 >> 1u);
    pSrc16[(i3 * 2u) + 1u] = (S1 >> 1u) + (T0 >> 1u);

  }

  /* end of last stage process */

  /* output is in 11.5(q5) format for the 1024 point */
  /* output is in 9.7(q7) format for the 256 point   */
  /* output is in 7.9(q9) format for the 64 point  */
  /* output is in 5.11(q11) format for the 16 point  */

#endif /* #ifndef ARM_MATH_CM0 */

}


/**   
 * @brief  Core function for the Q15 CIFFT butterfly process.  
 * @param[in, out] *pSrc16          points to the in-place buffer of Q15 data type.  
 * @param[in]      fftLen           length of the FFT.  
 * @param[in]      *pCoef16         points to twiddle coefficient buffer.  
 * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.  
 * @return none.  
 */

/*   
* Radix-4 IFFT algorithm used is :   
*   
* CIFFT uses same twiddle coefficients as CFFT function   
*  x[k] = x[n] + (j)k * x[n + fftLen/4] + (-1)k * x[n+fftLen/2] + (-j)k * x[n+3*fftLen/4]   
*   
*   
* IFFT is implemented with following changes in equations from FFT   
*   
* Input real and imaginary data:   
* x(n) = xa + j * ya   
* x(n+N/4 ) = xb + j * yb   
* x(n+N/2 ) = xc + j * yc   
* x(n+3N 4) = xd + j * yd   
*   
*   
* Output real and imaginary data:   
* x(4r) = xa'+ j * ya'   
* x(4r+1) = xb'+ j * yb'   
* x(4r+2) = xc'+ j * yc'   
* x(4r+3) = xd'+ j * yd'   
*   
*   
* Twiddle factors for radix-4 IFFT:   
* Wn = co1 + j * (si1)   
* W2n = co2 + j * (si2)   
* W3n = co3 + j * (si3)   
   
* The real and imaginary output values for the radix-4 butterfly are   
* xa' = xa + xb + xc + xd   
* ya' = ya + yb + yc + yd   
* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1)   
* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1)   
* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2)   
* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2)   
* xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3)   
* yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3)   
*   
*/

void arm_radix4_butterfly_inverse_q15(
  q15_t * pSrc16,
  uint32_t fftLen,
  q15_t * pCoef16,
  uint32_t twidCoefModifier)
{

#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  q31_t R, S, T, U;
  q31_t C1, C2, C3, out1, out2;
  q31_t *pSrc, *pCoeff;
  uint32_t n1, n2, ic, i0, i1, i2, i3, j, k;
  q15_t in;

  /* Total process is divided into three stages */

  /* process first stage, middle stages, & last stage */

  /*  pointer initializations for SIMD calculations */
  pSrc = (q31_t *) pSrc16;
  pCoeff = (q31_t *) pCoef16;

  /*  Initializations for the first stage */
  n2 = fftLen;
  n1 = n2;

  /* n2 = fftLen/4 */
  n2 >>= 2u;

  /* Index for twiddle coefficient */
  ic = 0u;

  /* Index for input read and output write */
  i0 = 0u;

  j = n2;

  /* Input is in 1.15(q15) format */

  /*  Start of first stage process */
  do
  {
    /*  Butterfly implementation */

    /*  index calculation for the input as, */
    /*  pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */
    i1 = i0 + n2;
    i2 = i1 + n2;
    i3 = i2 + n2;

    /*  Reading i0, i0+fftLen/2 inputs */
    /* Read ya (real), xa(imag) input */
    T = pSrc[i0];
    in = ((int16_t) (T & 0xFFFF)) >> 2;
    T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
    /* Read yc (real), xc(imag) input */
    S = pSrc[i2];
    in = ((int16_t) (S & 0xFFFF)) >> 2;
    S = ((S >> 2) & 0xFFFF0000) | (in & 0xFFFF);

    /* R = packed((ya + yc), (xa + xc) ) */
    R = __QADD16(T, S);
    /* S = packed((ya - yc), (xa - xc) ) */
    S = __QSUB16(T, S);

    /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
    /* Read yb (real), xb(imag) input */
    T = pSrc[i1];
    in = ((int16_t) (T & 0xFFFF)) >> 2;
    T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
    /* Read yd (real), xd(imag) input */
    U = pSrc[i3];
    in = ((int16_t) (U & 0xFFFF)) >> 2;
    U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF);

    /* T = packed((yb + yd), (xb + xd) ) */
    T = __QADD16(T, U);

    /*  writing the butterfly processed i0 sample */
    /* xa' = xa + xb + xc + xd */
    /* ya' = ya + yb + yc + yd */
    pSrc[i0] = __SHADD16(R, T);

    /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */
    R = __QSUB16(R, T);
    /* co2 & si2 are read from SIMD Coefficient pointer */
    C2 = pCoeff[2u * ic];

#ifndef ARM_MATH_BIG_ENDIAN

    /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */
    out1 = __SMUSD(C2, R) >> 16u;
    /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
    out2 = __SMUADX(C2, R);

#else

    /* xc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
    out1 = __SMUADX(C2, R) >> 16u;
    /* yc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */
    out2 = __SMUSD(-C2, R);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

    /*  Reading i0+fftLen/4 */
    /* T = packed(yb, xb) */
    T = pSrc[i1];
    in = ((int16_t) (T & 0xFFFF)) >> 2;
    T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);

    /* writing the butterfly processed i0 + fftLen/4 sample */
    /* writing output(xc', yc') in little endian format */
    pSrc[i1] = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

    /*  Butterfly calculations */
    /* U = packed(yd, xd) */
    U = pSrc[i3];
    in = ((int16_t) (U & 0xFFFF)) >> 2;
    U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF);

    /* T = packed(yb-yd, xb-xd) */
    T = __QSUB16(T, U);

#ifndef ARM_MATH_BIG_ENDIAN

    /* R = packed((ya-yc) - (xb- xd) , (xa-xc) + (yb-yd)) */
    R = __QSAX(S, T);
    /* S = packed((ya-yc) + (xb- xd),  (xa-xc) - (yb-yd)) */
    S = __QASX(S, T);

#else

    /* R = packed((ya-yc) - (xb- xd) , (xa-xc) + (yb-yd)) */
    R = __QASX(S, T);
    /* S = packed((ya-yc) + (xb- xd),  (xa-xc) - (yb-yd)) */
    S = __QSAX(S, T);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

    /* co1 & si1 are read from SIMD Coefficient pointer */
    C1 = pCoeff[ic];
    /*  Butterfly process for the i0+fftLen/2 sample */

#ifndef ARM_MATH_BIG_ENDIAN

    /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */
    out1 = __SMUSD(C1, S) >> 16u;
    /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */
    out2 = __SMUADX(C1, S);

#else

    /* xb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */
    out1 = __SMUADX(C1, S) >> 16u;
    /* yb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */
    out2 = __SMUSD(-C1, S);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

    /* writing output(xb', yb') in little endian format */
    pSrc[i2] = ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF);

    /* co3 & si3 are read from SIMD Coefficient pointer */
    C3 = pCoeff[3u * ic];
    /*  Butterfly process for the i0+3fftLen/4 sample */

#ifndef ARM_MATH_BIG_ENDIAN

    /* xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3) */
    out1 = __SMUSD(C3, R) >> 16u;
    /* yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3) */
    out2 = __SMUADX(C3, R);

#else

    /* xd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3) */
    out1 = __SMUADX(C3, R) >> 16u;
    /* yd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3) */
    out2 = __SMUSD(-C3, R);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

    /* writing output(xd', yd') in little endian format */
    pSrc[i3] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

    /*  Twiddle coefficients index modifier */
    ic = ic + twidCoefModifier;

    /*  Updating input index */
    i0 = i0 + 1u;

  } while(--j);

  /*  End of first stage process */

  /* data is in 4.11(q11) format */


  /*  Start of Middle stage process */

  /*  Twiddle coefficients index modifier */
  twidCoefModifier <<= 2u;

  /*  Calculation of Middle stage */
  for (k = fftLen / 4u; k > 4u; k >>= 2u)
  {
    /*  Initializations for the middle stage */
    n1 = n2;
    n2 >>= 2u;
    ic = 0u;

    for (j = 0u; j <= (n2 - 1u); j++)
    {
      /*  index calculation for the coefficients */
      C1 = pCoeff[ic];
      C2 = pCoeff[2u * ic];
      C3 = pCoeff[3u * ic];

      /*  Twiddle coefficients index modifier */
      ic = ic + twidCoefModifier;

      /*  Butterfly implementation */
      for (i0 = j; i0 < fftLen; i0 += n1)
      {
        /*  index calculation for the input as, */
        /*  pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */
        i1 = i0 + n2;
        i2 = i1 + n2;
        i3 = i2 + n2;

        /*  Reading i0, i0+fftLen/2 inputs */
        /* Read ya (real), xa(imag) input */
        T = pSrc[i0];

        /* Read yc (real), xc(imag) input */
        S = pSrc[i2];


        /* R = packed( (ya + yc), (xa + xc)) */
        R = __QADD16(T, S);
        /* S = packed((ya - yc), (xa - xc)) */
        S = __QSUB16(T, S);

        /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
        /* Read yb (real), xb(imag) input */
        T = pSrc[i1];

        /* Read yd (real), xd(imag) input */
        U = pSrc[i3];


        /* T = packed( (yb + yd), (xb + xd)) */
        T = __QADD16(T, U);

        /*  writing the butterfly processed i0 sample */
        /* xa' = xa + xb + xc + xd */
        /* ya' = ya + yb + yc + yd */
        out1 = __SHADD16(R, T);
        in = ((int16_t) (out1 & 0xFFFF)) >> 1;
        out1 = ((out1 >> 1) & 0xFFFF0000) | (in & 0xFFFF);
        pSrc[i0] = out1;



        /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */
        R = __SHSUB16(R, T);


#ifndef ARM_MATH_BIG_ENDIAN

        /* (ya-yb+yc-yd)* (si2) - (xa-xb+xc-xd)* co2 */
        out1 = __SMUSD(C2, R) >> 16u;
        /* (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
        out2 = __SMUADX(C2, R);

#else

        /* (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
        out1 = __SMUADX(R, C2) >> 16u;
        /* (ya-yb+yc-yd)* (si2) - (xa-xb+xc-xd)* co2 */
        out2 = __SMUSD(-C2, R);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

        /*  Reading i0+3fftLen/4 */
        /* Read yb (real), xb(imag) input */
        T = pSrc[i1];

        /*  writing the butterfly processed i0 + fftLen/4 sample */
        /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */
        /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
        pSrc[i1] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

        /*  Butterfly calculations */
        /* Read yd (real), xd(imag) input */
        U = pSrc[i3];

        /* T = packed(yb-yd, xb-xd) */
        T = __QSUB16(T, U);


#ifndef ARM_MATH_BIG_ENDIAN

        /* R = packed((ya-yc) - (xb- xd) , (xa-xc) + (yb-yd)) */
        R = __SHSAX(S, T);

        /* S = packed((ya-yc) + (xb- xd),  (xa-xc) - (yb-yd)) */
        S = __SHASX(S, T);
        /*  Butterfly process for the i0+fftLen/2 sample */
        out1 = __SMUSD(C1, S) >> 16u;
        out2 = __SMUADX(C1, S);

#else

        /* R = packed((ya-yc) - (xb- xd) , (xa-xc) + (yb-yd)) */
        R = __SHASX(S, T);

        /* S = packed((ya-yc) + (xb- xd),  (xa-xc) - (yb-yd)) */
        S = __SHSAX(S, T);
        /*  Butterfly process for the i0+fftLen/2 sample */
        out1 = __SMUADX(S, C1) >> 16u;
        out2 = __SMUSD(-C1, S);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

        /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */
        /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */
        pSrc[i2] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);

        /*  Butterfly process for the i0+3fftLen/4 sample */

#ifndef ARM_MATH_BIG_ENDIAN

        out1 = __SMUSD(C3, R) >> 16u;
        out2 = __SMUADX(C3, R);

#else

        out1 = __SMUADX(C3, R) >> 16u;
        out2 = __SMUSD(-C3, R);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

        /* xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3) */
        /* yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3) */
        pSrc[i3] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);


      }
    }
    /*  Twiddle coefficients index modifier */
    twidCoefModifier <<= 2u;
  }
  /*  End of Middle stages process */


  /* data is in 10.6(q6) format for the 1024 point */
  /* data is in 8.8(q8) format for the 256 point   */
  /* data is in 6.10(q10) format for the 64 point  */
  /* data is in 4.12(q12) format for the 16 point  */

  /* start of last stage process */


  /*  Initializations for the last stage */
  n1 = n2;
  n2 >>= 2u;

  /*  Butterfly implementation */
  for (i0 = 0u; i0 <= (fftLen - n1); i0 += n1)
  {
    /*  index calculation for the input as, */
    /*  pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */
    i1 = i0 + n2;
    i2 = i1 + n2;
    i3 = i2 + n2;

    /*  Reading i0, i0+fftLen/2 inputs */
    /* Read ya (real), xa(imag) input */
    T = pSrc[i0];
    /* Read yc (real), xc(imag) input */
    S = pSrc[i2];

    /* R = packed((ya + yc), (xa + xc)) */
    R = __QADD16(T, S);
    /* S = packed((ya - yc), (xa - xc)) */
    S = __QSUB16(T, S);

    /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
    /* Read yb (real), xb(imag) input */
    T = pSrc[i1];
    /* Read yd (real), xd(imag) input */
    U = pSrc[i3];

    /* T = packed((yb + yd), (xb + xd)) */
    T = __QADD16(T, U);

    /*  writing the butterfly processed i0 sample */
    /* xa' = xa + xb + xc + xd */
    /* ya' = ya + yb + yc + yd */
    pSrc[i0] = __SHADD16(R, T);

    /* R = packed((ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */
    R = __SHSUB16(R, T);

    /* Read yb (real), xb(imag) input */
    T = pSrc[i1];

    /*  writing the butterfly processed i0 + fftLen/4 sample */
    /* xc' = (xa-xb+xc-xd) */
    /* yc' = (ya-yb+yc-yd) */
    pSrc[i1] = R;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -